Spaces:
Running
Running
""" | |
Diagnostic checks for Linear Regression models. | |
""" | |
from typing import Dict, Any | |
import statsmodels.api as sm | |
from statsmodels.stats.diagnostic import het_breuschpagan, normal_ad | |
from statsmodels.stats.stattools import jarque_bera | |
from statsmodels.regression.linear_model import RegressionResultsWrapper | |
import pandas as pd | |
import logging | |
logger = logging.getLogger(__name__) | |
def run_lr_diagnostics(results: RegressionResultsWrapper, X: pd.DataFrame) -> Dict[str, Any]: | |
""" | |
Runs diagnostic checks on a fitted OLS model. | |
Args: | |
results: A fitted statsmodels OLS results object. | |
X: The design matrix (including constant) used for the regression. | |
Needed for heteroskedasticity tests. | |
Returns: | |
Dictionary containing diagnostic metrics. | |
""" | |
diagnostics = {} | |
try: | |
diagnostics['r_squared'] = results.rsquared | |
diagnostics['adj_r_squared'] = results.rsquared_adj | |
diagnostics['f_statistic'] = results.fvalue | |
diagnostics['f_p_value'] = results.f_pvalue | |
diagnostics['n_observations'] = int(results.nobs) | |
diagnostics['degrees_of_freedom_resid'] = int(results.df_resid) | |
# --- Normality of Residuals (Jarque-Bera) --- | |
try: | |
jb_value, jb_p_value, skew, kurtosis = jarque_bera(results.resid) | |
diagnostics['residuals_normality_jb_stat'] = jb_value | |
diagnostics['residuals_normality_jb_p_value'] = jb_p_value | |
diagnostics['residuals_skewness'] = skew | |
diagnostics['residuals_kurtosis'] = kurtosis | |
diagnostics['residuals_normality_status'] = "Normal" if jb_p_value > 0.05 else "Non-Normal" | |
except Exception as e: | |
logger.warning(f"Could not run Jarque-Bera test: {e}") | |
diagnostics['residuals_normality_status'] = "Test Failed" | |
# --- Homoscedasticity (Breusch-Pagan) --- | |
# Requires the design matrix X used in the model fitting | |
try: | |
lm_stat, lm_p_value, f_stat, f_p_value = het_breuschpagan(results.resid, X) | |
diagnostics['homoscedasticity_bp_lm_stat'] = lm_stat | |
diagnostics['homoscedasticity_bp_lm_p_value'] = lm_p_value | |
diagnostics['homoscedasticity_bp_f_stat'] = f_stat | |
diagnostics['homoscedasticity_bp_f_p_value'] = f_p_value | |
diagnostics['homoscedasticity_status'] = "Homoscedastic" if lm_p_value > 0.05 else "Heteroscedastic" | |
except Exception as e: | |
logger.warning(f"Could not run Breusch-Pagan test: {e}") | |
diagnostics['homoscedasticity_status'] = "Test Failed" | |
# --- Linearity (Basic check - often requires visual inspection) --- | |
# No standard quantitative test implemented here. Usually assessed via residual plots. | |
diagnostics['linearity_check'] = "Requires visual inspection (e.g., residual vs fitted plot)" | |
# --- Multicollinearity (Placeholder - requires VIF calculation) --- | |
# VIF requires iterating through predictors, more involved | |
diagnostics['multicollinearity_check'] = "Not Implemented (Requires VIF)" | |
return {"status": "Success", "details": diagnostics} | |
except Exception as e: | |
logger.error(f"Error running LR diagnostics: {e}") | |
return {"status": "Failed", "error": str(e), "details": diagnostics} # Return partial results if possible | |