File size: 25,003 Bytes
1721aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
## This file contains the functions that uses the classes in generator.py to generate the synthetic data

from .generator import PSMGenerator, PSWGenerator, IVGenerator, RDDGenerator, RCTGenerator, DiDGenerator, MultiTreatRCTGenerator, FrontDoorGenerator
import pandas as pd
import numpy as np
from pathlib import Path
import logging
import logging.config
import json

from .util import export_info

Path("reproduce_results/logs").mkdir(parents=True, exist_ok=True)
logging.config.fileConfig('reproduce_results/log_config.ini')

def config_hyperparameters(base_seed, base_mean, base_cov_diag, max_cont, max_bin, n_obs,
                           max_obs, min_obs, max_treat=2, max_periods=5, cutoff_max=25):
    """
    configure the hyperparameters for the data generation process.

    Args:
        base_seed (int): Base seed for random number generation
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov_diag (np.ndarray): Base (diagonal) covariance matrix for the covariates
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        n_obs (int): Number of observations to generate
        max_obs (int): Maximum number of observations to generate
        min_obs (int): Minimum number of observations to generate
        max_treat (int): Maximum number of treatment groups (default is 2)
        max_periods (int): Maximum number of periods for DiD data (default is 5)
        cutoff_max (int): Maximum value for the cutoff in RDD data (default is 25)

    Returns:
        dict: A dictionary containing the hyperparameters for data generation.
             (str) attribute -> (int) value


    """

    base_cov_mat = np.diag(base_cov_diag)
    np.random.seed(base_seed)
    n_treat = np.random.randint(2, max_treat + 1)
    true_effect = np.random.uniform(1, 10)
    true_effect_vec = np.array([0] + [np.random.uniform(1, 10) for i in range(n_treat)])
    n_continuous = np.random.randint(2, max_cont + 1)
    n_binary = np.random.randint(2, max_bin)
    n_observations = np.random.randint(min_obs, max_obs + 1)
    if n_obs is not None:
        n_observations = n_obs
    n_periods = np.random.randint(3, max_periods + 1)
    cutoff = np.random.randint(2, cutoff_max + 1)
    mean_vec = base_mean[0:n_continuous]
    cov_mat = base_cov_mat[0:n_continuous, 0:n_continuous]


    param_dict = {'tau': true_effect, 'continuous': n_continuous, 'binary': n_binary,
                  'obs': n_observations, 'mean': mean_vec, 'covar': cov_mat,
                  'tau_vec':true_effect_vec, "treat":n_treat, "periods": n_periods,
                  'cutoff':cutoff}

    return param_dict


def generate_observational_data(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs,
                                max_obs, data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate observational data using the PSMGenerator class.

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("observational_data_logger")
    logger.info("Generating observational data")
    metadata_dict = {}
    base_seed = 31
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin,
                                        n_obs, max_obs, min_obs)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = PSMGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed*2)
        data = gen.generate_data()
        name = "observational_data_{}.csv".format(i)
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "observational"}
        test_result = gen.test_data()
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)
    export_info(metadata_dict, metadata_save_loc, "observational")


def generate_rct_data(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs, max_obs,
                      data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generates RCT data

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("rct_data_logger")
    logger.info("Generating RCT data")
    metadata_dict = {}
    base_seed = 197
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = RCTGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed)
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "rct"}
        name = "rct_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)
    export_info(metadata_dict, metadata_save_loc, "rct")


def generate_multi_rct_data(base_mean, base_cov, dset_size, max_n_treat, max_cont, max_bin, min_obs, max_obs,
                            data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate multi-treatment RCT data
    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_n_treat (int): Maximum number of treatment groups
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """
    logger = logging.getLogger("multi_rct_data_logger")
    logger.info("Generating multi-treatment RCT data")
    metadata_dict = {}
    base_seed = 173
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i+1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs, max_treat=max_n_treat)
        n_treat = params['treat']
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}, n_treat: {}".format(
            params['obs'], params['continuous'], params['binary'], n_treat))
        logger.info("true_effect: {}".format(params['tau_vec']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = MultiTreatRCTGenerator(params['obs'], params['continuous'], params['treat'], n_binary_covars=params['binary'],
                                     mean=mean_vec, covar=cov_mat, true_effect_vec=params['tau_vec'], seed=seed,
                                     true_effect=params['tau'])
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": list(params['tau_vec']), "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "multi_rct"}
        name = "multi_rct_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)
    export_info(metadata_dict, metadata_save_loc, "multi_rct")


def generate_frontdoor_data(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs, max_obs,
                             data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generates front-door data

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Max number of continuous covariates
        max_bin (int): Max number of binary covariates
        min_obs (int): Minimum number of observations
        max_obs (int): Maximum number of observations
        data_save_loc (str): Folder to save generated CSV files
        metadata_save_loc (str): Folder to save metadata JSON
        n_obs (int or None): Fixed number of observations (if provided)
    """

    logger = logging.getLogger("frontdoor_data_logger")
    logger.info("Generating Front-Door synthetic data")
    metadata_dict = {}
    base_seed = 311 

    for i in range(dset_size):
        logger.info(f"Iteration: {i}")
        seed = (i + 1) * base_seed

        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs)

        logger.info("n_observations: {}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))

        mean_vec = params['mean']
        cov_mat = params['covar']

        gen = FrontDoorGenerator(
            n_observations=params['obs'],
            n_continuous_covars=params['continuous'],
            n_binary_covars=params['binary'],
            mean=mean_vec,
            covar=cov_mat,
            true_effect=params['tau'],
            seed=seed
        )

        data = gen.generate_data()
        test_result = gen.test_data()
        logger.info("Test result: {}\n".format(test_result))

        # Save CSV
        filename = f"frontdoor_data_{i}.csv"
        gen.save_data(data_save_loc, filename)

        # Metadata
        data_dict = {
            "true_effect": params['tau'],
            "observation": params['obs'],
            "continuous": params['continuous'],
            "binary": params['binary'],
            "type": "frontdoor"
        }
        metadata_dict[filename] = data_dict

    # Save metadata JSON
    export_info(metadata_dict, metadata_save_loc, "frontdoor")



def generate_canonical_did_data(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs, max_obs,
                                data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate canonical DiD data
    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """
    logger = logging.getLogger("did_data_logger")
    logger.info("Generating canonical DiD data")
    metadata_dict = {}
    base_seed = 281
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = DiDGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed)
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "did_canonical"}
        name = "did_canonical_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)

    export_info(metadata_dict, metadata_save_loc, "did_canonical")

def generate_data_iv(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs, max_obs,
                    data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate IV data
    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("iv_data_logger")
    logger.info("Generating IV data")
    metadata_dict = {}
    base_seed = 343
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = IVGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                          mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed)
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "IV"}
        name = "iv_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)

    export_info(metadata_dict, metadata_save_loc, "iv")

def generate_twfe_did_data(base_mean, base_cov, dset_size, max_cont, max_bin, n_periods,
                           min_obs, max_obs, data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate TWFE DiD data

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        n_periods (int): Number of periods for the DiD data
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("did_data_logger")
    logger.info("Generating TWFE DiD data")
    metadata_dict = {}
    base_seed = 447
    print("preiods: ", n_periods)
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs, max_periods=n_periods)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}, n_periods:{}".format(
            params['obs'], params['continuous'], params['binary'], params['periods']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = DiDGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed,
                           n_periods=n_periods)
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "did_twfe", "periods": params['periods']}
        name = "did_twfe_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)

    export_info(metadata_dict, metadata_save_loc, "did_twfe")

def generate_encouragement_data(base_mean, base_cov, dset_size, max_cont, max_bin, min_obs, max_obs,
                                data_save_loc, metadata_save_loc, n_obs=None):
    """
    Generate encouragement design data

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("iv_data_logger")
    logger.info("Generating encouragement design data")
    metadata_dict = {}
    base_seed = 571
    for i in range(dset_size):
        logger.info("Iteration: {}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}".format(
            params['obs'], params['continuous'], params['binary']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = IVGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed,
                           encouragement=True)
        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "encouragement"}
        name = "iv_encouragement_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)

    export_info(metadata_dict, metadata_save_loc, "iv_encouragement")


def generate_rdd_data(base_mean, base_cov, dset_size, max_cont, max_bin, max_cutoff,
                      min_obs, max_obs, data_save_loc, metadata_save_loc, n_obs=None):

    """
    Generates (sharp) RDD data

    Args:
        base_mean (np.ndarray): Base mean vector for the covariates
        base_cov (np.ndarray): Base covariance matrix for the covariates
        dset_size (int): Number of datasets to generate
        max_cont (int): Maximum number of continuous covariates
        max_bin (int): Maximum number of binary covariates
        max_cutoff (int): Maximum value for the cutoff in RDD data
        min_obs (int): Minimum number of observations to generate
        max_obs (int): Maximum number of observations to generate
        data_save_loc (str): Directory to save the generated data files
        metadata_save_loc (str): Directory to save the metadata information
        n_obs (int, None): number of observations. If None, it will be randomly
                           generated within the range of min_obs and max_obs.
    """

    logger = logging.getLogger("rdd_data_logger")
    logger.info("Generating RDD data")
    metadata_dict = {}
    base_seed = 683
    for i in range(dset_size):
        logger.info("Iteration:{}".format(i))
        seed = (i + 1) * base_seed
        params = config_hyperparameters(seed, base_mean, base_cov, max_cont, max_bin, n_obs,
                                        max_obs, min_obs, cutoff_max=max_cutoff)
        logger.info("n_observations:{}, n_continuous: {}, n_binary: {}, cutoff:{}".format(
            params['obs'], params['continuous'], params['binary'], params['cutoff']))
        logger.info("true_effect: {}".format(params['tau']))
        mean_vec = params['mean']
        cov_mat = params['covar']
        gen = RDDGenerator(params['obs'], params['continuous'], n_binary_covars=params['binary'],
                           mean=mean_vec, covar=cov_mat, true_effect=params['tau'], seed=seed,
                           cutoff=params['cutoff'], plot=True)

        data = gen.generate_data()
        test_result = gen.test_data()
        data_dict = {"true_effect": params['tau'], "observation": params['obs'], "continuous": params['continuous'],
                     "binary": params['binary'], "type": "rdd", 'cutoff': params['cutoff']}
        name = "rdd_data_{}.csv".format(i)
        logger.info("Test result: {}\n".format(test_result))
        metadata_dict[name] = data_dict
        gen.save_data(data_save_loc, name)

    export_info(metadata_dict, metadata_save_loc, "rdd")