File size: 26,326 Bytes
1721aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
## This code contains the base classess used in generating synthetic data

from linearmodels.iv import IV2SLS
from dowhy import CausalModel
from dowhy import datasets as dset
from sklearn.linear_model import LogisticRegression
import statsmodels.api as sm
import statsmodels.formula.api as smf
import numpy as np
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt

class DataGenerator:
    """
    Base class for generating synthetic data

    Attributes:
        n_observations (int): Number of observations
        n_continuous_covars (int): Number of covariates
        n_covars (int): total number of covariates (continuous + binary)
        n_treatments (int): Number of treatments
        true_effect (float): True effect size
        seed (int): Random seed for reproducibility
        data (pd.DataFrame): Generated data
        info (dict): Dictionary to store additional information about the data
        method (str): the causal inference method assocated with the synthetic
        mean (np.ndarray): mean of the covariates
        covar (np.ndarray): covariance matrix for the covariates
        heterogeneity (bool): whether or not the treatment effects are heterogeneous
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None,
                 covar = None, n_treatments=1, true_effect=0 ,seed=111, heterogeneity=0):

        np.random.seed(seed)
        self.n_observations = n_observations
        self.n_continuous_covars = n_continuous_covars
        self.n_covars = n_continuous_covars + n_binary_covars
        self.n_treatments = n_treatments
        self.n_binary_covars = n_binary_covars
        self.data = None
        self.seed = seed
        self.true_effect = true_effect
        self.method = None
        self.mean = mean
        self.covar = covar
        if mean is None:
            self.mean = np.random.randint(3, 20, size=self.n_continuous_covars)
        if self.covar is None:
            self.covar = np.identity(self.n_continuous_covars)
        self.heterogeneity = heterogeneity

    def generate_data(self):
        """
        Generates the synthetic data

        Returns:
            pd.DataFrame: The generated data
        """

        raise NotImplementedError("Invoke the method in the subclass")

    def save_data(self, folder, filename):
        """
        Saves the generated data as a CSV file

        Args:
            folder (str): path to the folder where the data is saved
            filename (str): name of the file
        """

        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")
        path = Path(folder)
        path.mkdir(parents=True, exist_ok=True)
        if not filename.endswith('.csv'):
            filename += '.csv'
        self.data.to_csv(path / filename, index=False)

    def test_data(self, print_=False):
        """
        Test the generated data, using the appropriate method.
        """

        raise NotImplementedError("This method should be overridden by subclasses")

    def generate_covariates(self):
        """
        Generate covariates. For continuous covariates, we use multivariate normal distribution, and for
        binary covars, we use binomial distribution. The non-binary covariates are discretized to their floor
        integer.
        """

        X_c = np.random.multivariate_normal(mean=self.mean, cov=self.covar,
                                                   size=self.n_observations)
        p = np.random.uniform(0.3, 0.7)
        X_b = np.random.binomial(1, p, size=(self.n_observations, self.n_binary_covars)).astype(int)
        covariates = np.hstack((X_c, X_b))
        covariates = covariates.astype(int)

        return covariates

class MultiTreatRCTGenerator(DataGenerator):
    """
    Base class for generating synthetic data for multi-treatment RCTs

    Additional Attributes:
        true_effect_vec (np.ndarray): the treatment effect for different treatments.
    """
    def __init__(self, n_observations, n_continuous_covars, n_treatments, n_binary_covars=2,
                 mean=None, covar=None, true_effect=1.0, true_effect_vec = None,
                 seed=111, heterogeneity=0):

        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
                         mean=mean, covar=covar, true_effect=true_effect, seed=seed,
                         heterogeneity=heterogeneity, n_treatments=n_treatments)

        self.method = "MultiTreatRCT"
        self.true_effect_vec = true_effect_vec

        ## if true effect vec is None, we set the treatment effects to be the same for all treatments
        if true_effect_vec is None:
            self.true_effect_vec = np.zeros(n_treatments)
            for i in range(1, n_treatments):
                self.true_effect_vec[i] = self.true_effect

    def generate_data(self):

        X = self.generate_covariates()
        cols = [f"X{i+1}" for i in range(self.n_covars)]
        df = pd.DataFrame(X, columns=cols)


        df['D'] = np.random.randint(0, self.n_treatments+1, size=self.n_observations)
        vec = np.random.uniform(0, 1, size=self.n_covars)
        intercept = np.random.normal(50, 3)
        noise = np.random.normal(0, 1, size=self.n_observations)

        # Apply appropriate treatment effect per treatment arm
        treatment_effects = np.array(self.true_effect_vec)
        df['treat_effect'] = treatment_effects[df['D']]

        df['Y'] = intercept + X.dot(vec) + df['treat_effect'] + noise

        df.drop(columns='treat_effect', inplace=True)
        self.data = df

        return df


    def test_data(self, print_=False):

        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")

        model = smf.ols('Y ~ C(D)', data=self.data).fit()

        result = model.summary()
        if print_:
            print(result)
        return result


# Front-Door Criterion Generator
class FrontDoorGenerator(DataGenerator):
    """
    Generates synthetic data satisfying the front-door criterion.
    D β†’ M β†’ Y, D ← U β†’ Y
    """
    def __init__(self, n_observations, n_continuous_covars=2, n_binary_covars=2,
                 mean=None, covar=None, seed=111, true_effect=2.0, heterogeneity=0):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
                         mean=mean, covar=covar, seed=seed, true_effect=true_effect,
                         n_treatments=1, heterogeneity=heterogeneity)
        self.method = "FrontDoor"

    def generate_data(self):
        X = self.generate_covariates()
        cols = [f"X{i+1}" for i in range(self.n_covars)]
        df = pd.DataFrame(X, columns=cols)

        # Latent confounder
        U = np.random.normal(0, 1, self.n_observations)

        # Treatment depends on U and X
        vec_d = np.random.uniform(0.5, 1.5, size=self.n_covars)
        df['D'] = (X @ vec_d + 0.8 * U + np.random.normal(0, 1, self.n_observations)) > 0
        df['D'] = df['D'].astype(int)

        # Mediator depends on D and X
        vec_m = np.random.uniform(0.5, 1.5, size=self.n_covars)
        df['M'] = X @ vec_m + df['D'] * 1.5 + np.random.normal(0, 1, self.n_observations)

        # Outcome depends on M, U and X
        vec_y = np.random.uniform(0.5, 1.5, size=self.n_covars)
        df['Y'] = 50 + 2.0 * df['M'] + 1.0 * U + X @ vec_y + np.random.normal(0, 1, self.n_observations)

        self.data = df
        return df

    def test_data(self, print_=False):
        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")
        
        model_m = smf.ols("M ~ D", data=self.data).fit()
        model_y = smf.ols("Y ~ M + D", data=self.data).fit()

        if print_:
            print("Regression: M ~ D")
            print(model_m.summary())
            print("\nRegression: Y ~ M + D")
            print(model_y.summary())

        return {"M~D": model_m.summary(), "Y~M+D": model_y.summary()}

class ObservationalDataGenerator(DataGenerator):
    """
    Generate synthetic data for observational studies.

    Additional Attributes:
        self.weights (np.ndarray): the propoensity score weights for each observation
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
                 true_effect=1.0, seed=111, heterogeneity=0):

        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
                         true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)

    def generate_data(self):

        X = self.generate_covariates()

        cols = [f"X{i+1}" for i in range(self.n_covars)]
        df = pd.DataFrame(X, columns=cols)
        X_norm = (X - X.mean(axis=0)) / X.std(axis=0)

        vec1 = np.random.normal(0, 0.5, size=self.n_covars)
        lin = X_norm @ vec1 + np.random.normal(0, 1, self.n_observations)
        ## the propensity score
        ps = 1 / (1 + np.exp(-lin))
        ## we do this for stability reasons
        ps = np.clip(ps, 1e-3, 1 -1e-3)
        df['D'] = np.random.binomial(1, ps).astype(int)
        vec2 = np.random.normal(0, 0.5, size=self.n_covars)
        intercept = np.random.normal(50, 3)
        noise = np.random.normal(0, 1, size=self.n_observations)
        df['Y'] = intercept + X @ vec2 + self.true_effect * df['D'] + noise

        self.propensity = ps
        self.weights = np.where(df['D'] == 1, 1 / ps, 1 / (1 - ps))
        self.data = df

        return self.data

class PSMGenerator(ObservationalDataGenerator):
    """
    Generate synthetic data for Propensity Score Matching (PSM)
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
                 true_effect=1.0, seed=111, heterogeneity=0):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
                         true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
        self.method = "PSM"

    def test_data(self, print_=False):
        """
        Test the generated data
        """
        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")

        lr = LogisticRegression(solver='lbfgs')
        X = self.data[[f"X{i+1}" for i in range(self.n_covars)]]
        lr.fit(X, self.data['D'])
        ps_hat = lr.predict_proba(X)[:, 1]
        treated = self.data[self.data['D'] == 1]
        control = self.data[self.data['D'] == 0]

        ## perform matching using the propensity scores
        match_idxs = [np.abs(ps_hat[control.index] - ps_hat[i]).argmin() for i in treated.index]
        matches = control.iloc[match_idxs]
        att = treated['Y'].mean() - matches['Y'].mean()

        result = f"Estimated ATT (matching): {att:.3f} | True: {self.true_effect}"
        if print_:
            print(result)
        return result

class PSWGenerator(ObservationalDataGenerator):
    """
    Generate synthetic data for Propensity Score Weighting (PSW)
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
                 true_effect=1.0, seed=111, heterogeneity=0):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
                         true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
        self.method = "PSW"

    def test_data(self, print_=False):
        """
        Test the generated data
        """
        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")

        df = self.data.copy()
        D = df['D']
        Y = df['Y']

        treated = D == 1
        control = D == 0

        w = np.zeros(self.n_observations)
        w[control] = self.propensity[control] / (1 - self.propensity[control])
        w[treated] = 1

        Y1 = Y[treated].mean()
        Y0_weighted = np.average(Y[control], weights=w[control])

        att = Y1 - Y0_weighted
        ate = np.average(Y * D / self.propensity - (1 - D) * Y / (1 - self.propensity))
        result = f"Estimated ATT (IPW): {att:.3f} | True: {self.true_effect}\nEstimated ATE: {ate:.3f} | True:{self.true_effect}"
        if print_:
            print(result)

        return result


class RCTGenerator(DataGenerator):
    """
    Generate synthetic data for Randomized Controlled Trials (RCT)
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None,
                covar=None, true_effect=1.0, seed=111, heterogeneity=0):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
                             mean=mean, covar=covar, true_effect=true_effect, seed=seed,
                             heterogeneity=heterogeneity)
        self.method = "RCT"

    def generate_data(self):

        X = self.generate_covariates()
        cols = [f"X{i+1}" for i in range(self.n_covars)]
        df = pd.DataFrame(X, columns=cols)
        df['D'] = np.random.binomial(1, 0.5, size=self.n_observations)
        vec = np.random.uniform(0, 1, size=self.n_covars)
        intercept = np.random.normal(50, 3)
        noise = np.random.normal(0, 1, size=self.n_observations)
        df['Y'] = (intercept + X.dot(vec) + self.true_effect * df['D'] + noise)
        self.data = df

    def test_data(self, print=False):
        if self.data is None:
            raise ValueError("Data not generated yet. Please generate data first.")
        model = smf.ols('Y ~ D', data=self.data).fit()
        result = model.summary()
        if print:
            print(result)
        est = model.params['D']
        conf_int = model.conf_int().loc['D']
        result = f"TRUE ATE: {self.true_effect:.3f}, ESTIMATED ATE: {est:.3f}, \
            95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"

        return result

class IVGenerator(DataGenerator):
    """
    Generate synthetic data for Instrumental Variables (IV) analysis. We assume two forms:
        1. Encouragement Design:
             Z -> D -> Y
             In this setting, encouragements (Z) is randomized. For instance, consider the administering of  vaccines.
             We cannot force people to take vaccines, however we can encourage them to take the vaccine. We could run
             a vaccine awareness campaign, where we randomly pick participants, and inform them about the benefits of
             vaccine. The user can either comply (take the vaccine) or not comply (not take the vaccine). Likewise, in the control
             group, the user can comply (not take the vaccine) or defy (take the vaccine)
        2.
               U
              / \
        Z -> D -> Y
        This is the classical setting where we have an unobserved confounder affecting both treatment (D) and outcome (Y).


    Additional Attributes:
        alpha (float): the effect of the instrument on the treatment (Z on D)
        encouragement (bool): whether or not this is an encouragement design
        beta_d (float): effect of the unobserved confounder (U) on treatment (D)
        beta_y (float): effect of the unobserved confounders (U) on outcome (Y)

    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, beta_d = 1.0,
                beta_y = 1.5, covar=None, true_effect=1.0, seed=111, heterogeneity=0, alpha=0.5,
                encouragement=False):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean,
                         covar=covar, true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
        self.method = "IV"
        self.alpha = alpha
        self.encouragement = encouragement
        self.beta_d = beta_d
        self.beta_y = beta_y

    def generate_data(self):
        X = self.generate_covariates()

        mean = np.random.randint(8, 13)
        Z = np.random.normal(mean, 2, size=self.n_observations).astype(int)
        U = np.random.normal(0, 1, size=self.n_observations)
        vec1 = np.random.normal(0, 0.5, size=self.n_covars)
        intercept1 = np.random.normal(30, 2)
        D = self.alpha * Z + X @ vec1 + np.random.normal(size=self.n_observations) + intercept1
        if self.encouragement:
            D = (D > np.mean(D)).astype(int)
        else:
            D = D + self.beta_d * U
        D = D.astype(int)

        intercept2 = np.random.normal(50, 3)
        vec2 = np.random.normal(0, 0.5, size=self.n_covars)
        Y = self.true_effect * D + X @ vec2 + np.random.normal(size=self.n_observations) + intercept2
        if not self.encouragement:
            Y = Y + self.beta_y * U
        df = pd.DataFrame(X, columns=[f"X{i+1}" for i in range(self.n_covars)])
        df['Z'] = Z
        df['D'] = D
        df['Y'] = Y
        self.data = df

        return self.data


    def test_data(self, print_=False):

        if self.data is None:
            raise ValueError("Data not generated yet.")
        model = IV2SLS.from_formula('Y ~ 1 + [D ~ Z]', data=self.data).fit()
        est = model.params['D']
        conf_int = model.conf_int().loc['D']
        result = f"TRUE LATE: {self.true_effect:.3f}, ESTIMATED LATE: {est:.3f}, \
            95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"
        if print_:
            print(result)
        return result


class RDDGenerator(DataGenerator):
    """
    Generate synthetic data for (sharp) Regression Discontinuity Design (RDD).

    Additional Attributes:
        cutoff (float): the cutoff for treatment assignment
        bandwidth (float): the bandwidth for the running variable we consider when estimating the treatment effects
        plot (bool): whether we plot the data or not
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, plot=False,
                 covar=None, true_effect=1.0, seed=111, heterogeneity=0, cutoff=10, bandwidth=0.1):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
                         mean=mean, covar=covar, true_effect=true_effect, seed=seed,
                         heterogeneity=heterogeneity)
        self.cutoff = cutoff
        self.bandwidth = bandwidth
        self.method = "RDD"
        self.plot=plot

        print("self.plot", self.plot)

    def generate_data(self):

        X = self.generate_covariates()
        cols = [f"X{i+1}" for i in range(self.n_covars)]
        df = pd.DataFrame(X, columns=cols)

        df['running_X'] = np.random.normal(0, 2, size=self.n_observations) + self.cutoff


        df['D'] = (df['running_X'] >= self.cutoff).astype(int)

        intercept = 10
        coeffs = np.random.normal(0, 0.1, size=self.n_covars)

        ## slope of the line below the threshold
        m_below = 1.5
        ## slope of the line above the threshold
        m_above = 0.8

        df['running_centered'] = df['running_X'] - self.cutoff
        # Use centered version for slope
        df["Y"] = (intercept + self.true_effect * df['D'] + m_below * df['running_centered'] * (1 - df['D']) +  \
                   m_above * df['running_centered'] * df['D'] +  X @ coeffs + np.random.normal(0, 0.5, size=self.n_observations))

        if self.plot:
            plt.figure(figsize=(10, 6))
            plt.scatter(df[df['D']==0]['running_X'], df[df['D']==0]['Y'],
                   alpha=0.5, label='Control', color='blue')
            plt.scatter(df[df['D']==1]['running_X'], df[df['D']==1]['Y'],
                   alpha=0.5, label='Treatment', color='red')
            plt.axvline(self.cutoff, color='black', linestyle='--', label='Cutoff')
            plt.show()

        self.data = df[[cols for cols in df.columns if cols != 'running_centered']]

        return self.data


    def test_data(self, print_=False):

        if self.data is None:
            raise ValueError("Data not generated yet.")
        df = self.data.copy()
        df['running_adj'] = df['running_X'].astype(float) - self.cutoff
        df = df[np.abs(df['running_adj']) <= self.bandwidth].copy()
        model = smf.ols('Y ~ D + running_adj + D:running_adj', data=df).fit()
        est = model.params['D']
        conf_int = model.conf_int().loc['D']

        result = f"TRUE LATE: {self.true_effect:.3f}, ESTIMATED LATE: {est:.3f}, \
              95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"
        if print_:
            print(result)
        return result


class DiDGenerator(DataGenerator):
    """
    Generate synthetic data for Difference-in-Differences (DiD) analysis

    Additional Attributes:
        1. n_periods (int): number of time-periods
    """

    def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, n_periods=2,
                 mean=None, covar=None, true_effect=1.0, seed=111, heterogeneity=0):
        super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
                         mean=mean, covar=covar, true_effect=true_effect,
                         seed=seed, heterogeneity=heterogeneity)

        self.method = "DiD"
        self.n_periods = n_periods

    def canonical_did_model(self):
        """
        This is the classical DiD setting with two periods (pre and post treatment) and two groups (treatment and control)
        """

        ## fraction of observations that receives the treatment
        frac_treated = np.random.uniform(0.35, 0.65)
        n_treated = int(frac_treated * self.n_observations)
        unit_ids = np.arange(self.n_observations)
        treatment_status = np.zeros(self.n_observations, dtype=int)
        treatment_status[:n_treated] = 1
        np.random.shuffle(treatment_status)

        X = self.generate_covariates()
        cols = [f"X{i+1}" for i in range(self.n_covars)]
        covar_df = pd.DataFrame(X, columns=cols)


        vec = np.random.normal(0, 0.1, size=self.n_covars)

        intercept = np.random.normal(50, 3)
        treat_effect = np.random.normal(0, 1)
        time_effect = np.random.normal(0, 1)

        covar_term = X @ vec
        pre_noise = np.random.normal(0, 1, self.n_observations)
        pre_outcome = intercept + covar_term + pre_noise + treat_effect * treatment_status
        pre_data = pd.DataFrame({'unit_id': unit_ids, 'post': 0, 'D': treatment_status,
                                 'Y': pre_outcome})
        post_noise = np.random.normal(0, 1, self.n_observations)
        post_outcome = (intercept + time_effect + covar_term + self.true_effect * treatment_status
                        + treat_effect * treatment_status + post_noise)

        post_data = pd.DataFrame({'unit_id': unit_ids, 'post': 1, 'D': treatment_status,
                                  'Y': post_outcome})

        df = pd.concat([pre_data, post_data], ignore_index=True)

        df = df.merge(covar_df, left_on="unit_id", right_index=True)

        return df[['unit_id', 'post', 'D', 'Y'] + cols]

    def twfe_model(self):
        """
        Generate panel data for Two-Way Fixed Effects DiD model. This is a generalization of 2-period DiD for multi-year treatments
        """

        ## fraction of observations that receives the treatment
        frac_treated = np.random.uniform(0.35, 0.65)
        unit_ids = np.arange(1, self.n_observations + 1)
        time_periods = np.arange(0, self.n_periods)

        df = pd.DataFrame([(i, t) for i in unit_ids for t in time_periods],
                      columns=["unit", "time"])

        X = self.generate_covariates()
        for j in range(self.n_covars):
            df[f"X{j+1}"] = np.repeat(X[:, j], self.n_periods)

        ## Assign treatment timing
        n_treated = int(frac_treated * self.n_observations)
        treated_units = np.random.choice(unit_ids, size=n_treated, replace=False)
        treatment_start = {unit: np.random.randint(1, self.n_periods) for unit in treated_units}

        df["treat_post"] = df.apply(lambda row: int(row["unit"] in treatment_start and
                                                    row["time"] >= treatment_start[row["unit"]]),axis=1)

        ## State fixed effects
        unit_effects = dict(zip(unit_ids, np.random.normal(0, 1.0, self.n_observations)))
        ## Time fixed effects
        time_effects = dict(zip(time_periods, np.random.normal(0, 1, len(time_periods))))
        df["unit_fe"] = df["unit"].map(unit_effects)
        df["time_fe"] = df["time"].map(time_effects)

        covar_effects = np.random.normal(0, 0.1, self.n_covars)
        X_matrix = df[[f"X{j+1}" for j in range(self.n_covars)]].values
        covar_term = X_matrix @ covar_effects
        intercept = np.random.normal(50, 3)
        noise = np.random.normal(0, 1, len(df))

        df["Y"] = intercept + covar_term + df["unit_fe"] + df["time_fe"] + self.true_effect * df["treat_post"] + noise

        final_df = df[["unit", "time", "treat_post", "Y"] + [f"X{j+1}" for j in range(self.n_covars)]]
        final_df = final_df.rename(columns={"time": "year", "treat_post": "D"})

        return final_df


    def generate_data(self):

        if self.n_periods == 2:
            self.data = self.canonical_did_model()
        else:
            self.data = self.twfe_model()

        return self.data


    def test_data(self, print_=False):

        estimated_att = None
        if self.data is None:
            raise ValueError("Data not generated yet.")
        if self.n_periods == 2:
            print("Testing canonical DiD model")
            model = smf.ols('Y ~ D * post', data=self.data).fit()
            estimated_att = model.params['D:post']
            conf_int = model.conf_int().loc['D:post']
        else:
            print("Testing TWFE model")
            model = smf.ols('Y ~ D + C(unit) + C(year)', data=self.data).fit()
            estimated_att = model.params['D']
            conf_int = model.conf_int().loc['D']

        result = "TRUE ATT: {:.3f}, EMPRICAL ATT:{:.3f}\nCONFIDENCE INTERVAL:{}".format(
                 self.true_effect, estimated_att, conf_int)
        if print_:
            print(result)
        return result