Spaces:
Running
Running
File size: 26,326 Bytes
1721aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
## This code contains the base classess used in generating synthetic data
from linearmodels.iv import IV2SLS
from dowhy import CausalModel
from dowhy import datasets as dset
from sklearn.linear_model import LogisticRegression
import statsmodels.api as sm
import statsmodels.formula.api as smf
import numpy as np
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
class DataGenerator:
"""
Base class for generating synthetic data
Attributes:
n_observations (int): Number of observations
n_continuous_covars (int): Number of covariates
n_covars (int): total number of covariates (continuous + binary)
n_treatments (int): Number of treatments
true_effect (float): True effect size
seed (int): Random seed for reproducibility
data (pd.DataFrame): Generated data
info (dict): Dictionary to store additional information about the data
method (str): the causal inference method assocated with the synthetic
mean (np.ndarray): mean of the covariates
covar (np.ndarray): covariance matrix for the covariates
heterogeneity (bool): whether or not the treatment effects are heterogeneous
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None,
covar = None, n_treatments=1, true_effect=0 ,seed=111, heterogeneity=0):
np.random.seed(seed)
self.n_observations = n_observations
self.n_continuous_covars = n_continuous_covars
self.n_covars = n_continuous_covars + n_binary_covars
self.n_treatments = n_treatments
self.n_binary_covars = n_binary_covars
self.data = None
self.seed = seed
self.true_effect = true_effect
self.method = None
self.mean = mean
self.covar = covar
if mean is None:
self.mean = np.random.randint(3, 20, size=self.n_continuous_covars)
if self.covar is None:
self.covar = np.identity(self.n_continuous_covars)
self.heterogeneity = heterogeneity
def generate_data(self):
"""
Generates the synthetic data
Returns:
pd.DataFrame: The generated data
"""
raise NotImplementedError("Invoke the method in the subclass")
def save_data(self, folder, filename):
"""
Saves the generated data as a CSV file
Args:
folder (str): path to the folder where the data is saved
filename (str): name of the file
"""
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
path = Path(folder)
path.mkdir(parents=True, exist_ok=True)
if not filename.endswith('.csv'):
filename += '.csv'
self.data.to_csv(path / filename, index=False)
def test_data(self, print_=False):
"""
Test the generated data, using the appropriate method.
"""
raise NotImplementedError("This method should be overridden by subclasses")
def generate_covariates(self):
"""
Generate covariates. For continuous covariates, we use multivariate normal distribution, and for
binary covars, we use binomial distribution. The non-binary covariates are discretized to their floor
integer.
"""
X_c = np.random.multivariate_normal(mean=self.mean, cov=self.covar,
size=self.n_observations)
p = np.random.uniform(0.3, 0.7)
X_b = np.random.binomial(1, p, size=(self.n_observations, self.n_binary_covars)).astype(int)
covariates = np.hstack((X_c, X_b))
covariates = covariates.astype(int)
return covariates
class MultiTreatRCTGenerator(DataGenerator):
"""
Base class for generating synthetic data for multi-treatment RCTs
Additional Attributes:
true_effect_vec (np.ndarray): the treatment effect for different treatments.
"""
def __init__(self, n_observations, n_continuous_covars, n_treatments, n_binary_covars=2,
mean=None, covar=None, true_effect=1.0, true_effect_vec = None,
seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
mean=mean, covar=covar, true_effect=true_effect, seed=seed,
heterogeneity=heterogeneity, n_treatments=n_treatments)
self.method = "MultiTreatRCT"
self.true_effect_vec = true_effect_vec
## if true effect vec is None, we set the treatment effects to be the same for all treatments
if true_effect_vec is None:
self.true_effect_vec = np.zeros(n_treatments)
for i in range(1, n_treatments):
self.true_effect_vec[i] = self.true_effect
def generate_data(self):
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
df = pd.DataFrame(X, columns=cols)
df['D'] = np.random.randint(0, self.n_treatments+1, size=self.n_observations)
vec = np.random.uniform(0, 1, size=self.n_covars)
intercept = np.random.normal(50, 3)
noise = np.random.normal(0, 1, size=self.n_observations)
# Apply appropriate treatment effect per treatment arm
treatment_effects = np.array(self.true_effect_vec)
df['treat_effect'] = treatment_effects[df['D']]
df['Y'] = intercept + X.dot(vec) + df['treat_effect'] + noise
df.drop(columns='treat_effect', inplace=True)
self.data = df
return df
def test_data(self, print_=False):
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
model = smf.ols('Y ~ C(D)', data=self.data).fit()
result = model.summary()
if print_:
print(result)
return result
# Front-Door Criterion Generator
class FrontDoorGenerator(DataGenerator):
"""
Generates synthetic data satisfying the front-door criterion.
D β M β Y, D β U β Y
"""
def __init__(self, n_observations, n_continuous_covars=2, n_binary_covars=2,
mean=None, covar=None, seed=111, true_effect=2.0, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
mean=mean, covar=covar, seed=seed, true_effect=true_effect,
n_treatments=1, heterogeneity=heterogeneity)
self.method = "FrontDoor"
def generate_data(self):
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
df = pd.DataFrame(X, columns=cols)
# Latent confounder
U = np.random.normal(0, 1, self.n_observations)
# Treatment depends on U and X
vec_d = np.random.uniform(0.5, 1.5, size=self.n_covars)
df['D'] = (X @ vec_d + 0.8 * U + np.random.normal(0, 1, self.n_observations)) > 0
df['D'] = df['D'].astype(int)
# Mediator depends on D and X
vec_m = np.random.uniform(0.5, 1.5, size=self.n_covars)
df['M'] = X @ vec_m + df['D'] * 1.5 + np.random.normal(0, 1, self.n_observations)
# Outcome depends on M, U and X
vec_y = np.random.uniform(0.5, 1.5, size=self.n_covars)
df['Y'] = 50 + 2.0 * df['M'] + 1.0 * U + X @ vec_y + np.random.normal(0, 1, self.n_observations)
self.data = df
return df
def test_data(self, print_=False):
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
model_m = smf.ols("M ~ D", data=self.data).fit()
model_y = smf.ols("Y ~ M + D", data=self.data).fit()
if print_:
print("Regression: M ~ D")
print(model_m.summary())
print("\nRegression: Y ~ M + D")
print(model_y.summary())
return {"M~D": model_m.summary(), "Y~M+D": model_y.summary()}
class ObservationalDataGenerator(DataGenerator):
"""
Generate synthetic data for observational studies.
Additional Attributes:
self.weights (np.ndarray): the propoensity score weights for each observation
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
true_effect=1.0, seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
def generate_data(self):
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
df = pd.DataFrame(X, columns=cols)
X_norm = (X - X.mean(axis=0)) / X.std(axis=0)
vec1 = np.random.normal(0, 0.5, size=self.n_covars)
lin = X_norm @ vec1 + np.random.normal(0, 1, self.n_observations)
## the propensity score
ps = 1 / (1 + np.exp(-lin))
## we do this for stability reasons
ps = np.clip(ps, 1e-3, 1 -1e-3)
df['D'] = np.random.binomial(1, ps).astype(int)
vec2 = np.random.normal(0, 0.5, size=self.n_covars)
intercept = np.random.normal(50, 3)
noise = np.random.normal(0, 1, size=self.n_observations)
df['Y'] = intercept + X @ vec2 + self.true_effect * df['D'] + noise
self.propensity = ps
self.weights = np.where(df['D'] == 1, 1 / ps, 1 / (1 - ps))
self.data = df
return self.data
class PSMGenerator(ObservationalDataGenerator):
"""
Generate synthetic data for Propensity Score Matching (PSM)
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
true_effect=1.0, seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
self.method = "PSM"
def test_data(self, print_=False):
"""
Test the generated data
"""
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
lr = LogisticRegression(solver='lbfgs')
X = self.data[[f"X{i+1}" for i in range(self.n_covars)]]
lr.fit(X, self.data['D'])
ps_hat = lr.predict_proba(X)[:, 1]
treated = self.data[self.data['D'] == 1]
control = self.data[self.data['D'] == 0]
## perform matching using the propensity scores
match_idxs = [np.abs(ps_hat[control.index] - ps_hat[i]).argmin() for i in treated.index]
matches = control.iloc[match_idxs]
att = treated['Y'].mean() - matches['Y'].mean()
result = f"Estimated ATT (matching): {att:.3f} | True: {self.true_effect}"
if print_:
print(result)
return result
class PSWGenerator(ObservationalDataGenerator):
"""
Generate synthetic data for Propensity Score Weighting (PSW)
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, covar=None,
true_effect=1.0, seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean, covar=covar,
true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
self.method = "PSW"
def test_data(self, print_=False):
"""
Test the generated data
"""
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
df = self.data.copy()
D = df['D']
Y = df['Y']
treated = D == 1
control = D == 0
w = np.zeros(self.n_observations)
w[control] = self.propensity[control] / (1 - self.propensity[control])
w[treated] = 1
Y1 = Y[treated].mean()
Y0_weighted = np.average(Y[control], weights=w[control])
att = Y1 - Y0_weighted
ate = np.average(Y * D / self.propensity - (1 - D) * Y / (1 - self.propensity))
result = f"Estimated ATT (IPW): {att:.3f} | True: {self.true_effect}\nEstimated ATE: {ate:.3f} | True:{self.true_effect}"
if print_:
print(result)
return result
class RCTGenerator(DataGenerator):
"""
Generate synthetic data for Randomized Controlled Trials (RCT)
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None,
covar=None, true_effect=1.0, seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
mean=mean, covar=covar, true_effect=true_effect, seed=seed,
heterogeneity=heterogeneity)
self.method = "RCT"
def generate_data(self):
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
df = pd.DataFrame(X, columns=cols)
df['D'] = np.random.binomial(1, 0.5, size=self.n_observations)
vec = np.random.uniform(0, 1, size=self.n_covars)
intercept = np.random.normal(50, 3)
noise = np.random.normal(0, 1, size=self.n_observations)
df['Y'] = (intercept + X.dot(vec) + self.true_effect * df['D'] + noise)
self.data = df
def test_data(self, print=False):
if self.data is None:
raise ValueError("Data not generated yet. Please generate data first.")
model = smf.ols('Y ~ D', data=self.data).fit()
result = model.summary()
if print:
print(result)
est = model.params['D']
conf_int = model.conf_int().loc['D']
result = f"TRUE ATE: {self.true_effect:.3f}, ESTIMATED ATE: {est:.3f}, \
95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"
return result
class IVGenerator(DataGenerator):
"""
Generate synthetic data for Instrumental Variables (IV) analysis. We assume two forms:
1. Encouragement Design:
Z -> D -> Y
In this setting, encouragements (Z) is randomized. For instance, consider the administering of vaccines.
We cannot force people to take vaccines, however we can encourage them to take the vaccine. We could run
a vaccine awareness campaign, where we randomly pick participants, and inform them about the benefits of
vaccine. The user can either comply (take the vaccine) or not comply (not take the vaccine). Likewise, in the control
group, the user can comply (not take the vaccine) or defy (take the vaccine)
2.
U
/ \
Z -> D -> Y
This is the classical setting where we have an unobserved confounder affecting both treatment (D) and outcome (Y).
Additional Attributes:
alpha (float): the effect of the instrument on the treatment (Z on D)
encouragement (bool): whether or not this is an encouragement design
beta_d (float): effect of the unobserved confounder (U) on treatment (D)
beta_y (float): effect of the unobserved confounders (U) on outcome (Y)
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, beta_d = 1.0,
beta_y = 1.5, covar=None, true_effect=1.0, seed=111, heterogeneity=0, alpha=0.5,
encouragement=False):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars, mean=mean,
covar=covar, true_effect=true_effect, seed=seed, heterogeneity=heterogeneity)
self.method = "IV"
self.alpha = alpha
self.encouragement = encouragement
self.beta_d = beta_d
self.beta_y = beta_y
def generate_data(self):
X = self.generate_covariates()
mean = np.random.randint(8, 13)
Z = np.random.normal(mean, 2, size=self.n_observations).astype(int)
U = np.random.normal(0, 1, size=self.n_observations)
vec1 = np.random.normal(0, 0.5, size=self.n_covars)
intercept1 = np.random.normal(30, 2)
D = self.alpha * Z + X @ vec1 + np.random.normal(size=self.n_observations) + intercept1
if self.encouragement:
D = (D > np.mean(D)).astype(int)
else:
D = D + self.beta_d * U
D = D.astype(int)
intercept2 = np.random.normal(50, 3)
vec2 = np.random.normal(0, 0.5, size=self.n_covars)
Y = self.true_effect * D + X @ vec2 + np.random.normal(size=self.n_observations) + intercept2
if not self.encouragement:
Y = Y + self.beta_y * U
df = pd.DataFrame(X, columns=[f"X{i+1}" for i in range(self.n_covars)])
df['Z'] = Z
df['D'] = D
df['Y'] = Y
self.data = df
return self.data
def test_data(self, print_=False):
if self.data is None:
raise ValueError("Data not generated yet.")
model = IV2SLS.from_formula('Y ~ 1 + [D ~ Z]', data=self.data).fit()
est = model.params['D']
conf_int = model.conf_int().loc['D']
result = f"TRUE LATE: {self.true_effect:.3f}, ESTIMATED LATE: {est:.3f}, \
95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"
if print_:
print(result)
return result
class RDDGenerator(DataGenerator):
"""
Generate synthetic data for (sharp) Regression Discontinuity Design (RDD).
Additional Attributes:
cutoff (float): the cutoff for treatment assignment
bandwidth (float): the bandwidth for the running variable we consider when estimating the treatment effects
plot (bool): whether we plot the data or not
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, mean=None, plot=False,
covar=None, true_effect=1.0, seed=111, heterogeneity=0, cutoff=10, bandwidth=0.1):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
mean=mean, covar=covar, true_effect=true_effect, seed=seed,
heterogeneity=heterogeneity)
self.cutoff = cutoff
self.bandwidth = bandwidth
self.method = "RDD"
self.plot=plot
print("self.plot", self.plot)
def generate_data(self):
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
df = pd.DataFrame(X, columns=cols)
df['running_X'] = np.random.normal(0, 2, size=self.n_observations) + self.cutoff
df['D'] = (df['running_X'] >= self.cutoff).astype(int)
intercept = 10
coeffs = np.random.normal(0, 0.1, size=self.n_covars)
## slope of the line below the threshold
m_below = 1.5
## slope of the line above the threshold
m_above = 0.8
df['running_centered'] = df['running_X'] - self.cutoff
# Use centered version for slope
df["Y"] = (intercept + self.true_effect * df['D'] + m_below * df['running_centered'] * (1 - df['D']) + \
m_above * df['running_centered'] * df['D'] + X @ coeffs + np.random.normal(0, 0.5, size=self.n_observations))
if self.plot:
plt.figure(figsize=(10, 6))
plt.scatter(df[df['D']==0]['running_X'], df[df['D']==0]['Y'],
alpha=0.5, label='Control', color='blue')
plt.scatter(df[df['D']==1]['running_X'], df[df['D']==1]['Y'],
alpha=0.5, label='Treatment', color='red')
plt.axvline(self.cutoff, color='black', linestyle='--', label='Cutoff')
plt.show()
self.data = df[[cols for cols in df.columns if cols != 'running_centered']]
return self.data
def test_data(self, print_=False):
if self.data is None:
raise ValueError("Data not generated yet.")
df = self.data.copy()
df['running_adj'] = df['running_X'].astype(float) - self.cutoff
df = df[np.abs(df['running_adj']) <= self.bandwidth].copy()
model = smf.ols('Y ~ D + running_adj + D:running_adj', data=df).fit()
est = model.params['D']
conf_int = model.conf_int().loc['D']
result = f"TRUE LATE: {self.true_effect:.3f}, ESTIMATED LATE: {est:.3f}, \
95% CI: [{conf_int[0]:.3f}, {conf_int[1]:.3f}]"
if print_:
print(result)
return result
class DiDGenerator(DataGenerator):
"""
Generate synthetic data for Difference-in-Differences (DiD) analysis
Additional Attributes:
1. n_periods (int): number of time-periods
"""
def __init__(self, n_observations, n_continuous_covars, n_binary_covars=2, n_periods=2,
mean=None, covar=None, true_effect=1.0, seed=111, heterogeneity=0):
super().__init__(n_observations, n_continuous_covars, n_binary_covars=n_binary_covars,
mean=mean, covar=covar, true_effect=true_effect,
seed=seed, heterogeneity=heterogeneity)
self.method = "DiD"
self.n_periods = n_periods
def canonical_did_model(self):
"""
This is the classical DiD setting with two periods (pre and post treatment) and two groups (treatment and control)
"""
## fraction of observations that receives the treatment
frac_treated = np.random.uniform(0.35, 0.65)
n_treated = int(frac_treated * self.n_observations)
unit_ids = np.arange(self.n_observations)
treatment_status = np.zeros(self.n_observations, dtype=int)
treatment_status[:n_treated] = 1
np.random.shuffle(treatment_status)
X = self.generate_covariates()
cols = [f"X{i+1}" for i in range(self.n_covars)]
covar_df = pd.DataFrame(X, columns=cols)
vec = np.random.normal(0, 0.1, size=self.n_covars)
intercept = np.random.normal(50, 3)
treat_effect = np.random.normal(0, 1)
time_effect = np.random.normal(0, 1)
covar_term = X @ vec
pre_noise = np.random.normal(0, 1, self.n_observations)
pre_outcome = intercept + covar_term + pre_noise + treat_effect * treatment_status
pre_data = pd.DataFrame({'unit_id': unit_ids, 'post': 0, 'D': treatment_status,
'Y': pre_outcome})
post_noise = np.random.normal(0, 1, self.n_observations)
post_outcome = (intercept + time_effect + covar_term + self.true_effect * treatment_status
+ treat_effect * treatment_status + post_noise)
post_data = pd.DataFrame({'unit_id': unit_ids, 'post': 1, 'D': treatment_status,
'Y': post_outcome})
df = pd.concat([pre_data, post_data], ignore_index=True)
df = df.merge(covar_df, left_on="unit_id", right_index=True)
return df[['unit_id', 'post', 'D', 'Y'] + cols]
def twfe_model(self):
"""
Generate panel data for Two-Way Fixed Effects DiD model. This is a generalization of 2-period DiD for multi-year treatments
"""
## fraction of observations that receives the treatment
frac_treated = np.random.uniform(0.35, 0.65)
unit_ids = np.arange(1, self.n_observations + 1)
time_periods = np.arange(0, self.n_periods)
df = pd.DataFrame([(i, t) for i in unit_ids for t in time_periods],
columns=["unit", "time"])
X = self.generate_covariates()
for j in range(self.n_covars):
df[f"X{j+1}"] = np.repeat(X[:, j], self.n_periods)
## Assign treatment timing
n_treated = int(frac_treated * self.n_observations)
treated_units = np.random.choice(unit_ids, size=n_treated, replace=False)
treatment_start = {unit: np.random.randint(1, self.n_periods) for unit in treated_units}
df["treat_post"] = df.apply(lambda row: int(row["unit"] in treatment_start and
row["time"] >= treatment_start[row["unit"]]),axis=1)
## State fixed effects
unit_effects = dict(zip(unit_ids, np.random.normal(0, 1.0, self.n_observations)))
## Time fixed effects
time_effects = dict(zip(time_periods, np.random.normal(0, 1, len(time_periods))))
df["unit_fe"] = df["unit"].map(unit_effects)
df["time_fe"] = df["time"].map(time_effects)
covar_effects = np.random.normal(0, 0.1, self.n_covars)
X_matrix = df[[f"X{j+1}" for j in range(self.n_covars)]].values
covar_term = X_matrix @ covar_effects
intercept = np.random.normal(50, 3)
noise = np.random.normal(0, 1, len(df))
df["Y"] = intercept + covar_term + df["unit_fe"] + df["time_fe"] + self.true_effect * df["treat_post"] + noise
final_df = df[["unit", "time", "treat_post", "Y"] + [f"X{j+1}" for j in range(self.n_covars)]]
final_df = final_df.rename(columns={"time": "year", "treat_post": "D"})
return final_df
def generate_data(self):
if self.n_periods == 2:
self.data = self.canonical_did_model()
else:
self.data = self.twfe_model()
return self.data
def test_data(self, print_=False):
estimated_att = None
if self.data is None:
raise ValueError("Data not generated yet.")
if self.n_periods == 2:
print("Testing canonical DiD model")
model = smf.ols('Y ~ D * post', data=self.data).fit()
estimated_att = model.params['D:post']
conf_int = model.conf_int().loc['D:post']
else:
print("Testing TWFE model")
model = smf.ols('Y ~ D + C(unit) + C(year)', data=self.data).fit()
estimated_att = model.params['D']
conf_int = model.conf_int().loc['D']
result = "TRUE ATT: {:.3f}, EMPRICAL ATT:{:.3f}\nCONFIDENCE INTERVAL:{}".format(
self.true_effect, estimated_att, conf_int)
if print_:
print(result)
return result
|