Spaces:
Running
Running
File size: 18,187 Bytes
1721aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import pandas as pd
import statsmodels.api as sm
from statsmodels.sandbox.regression.gmm import IV2SLS
from dowhy import CausalModel # Primary path
from typing import Dict, Any, List, Union, Optional
import logging
from langchain.chat_models.base import BaseChatModel
from .diagnostics import run_iv_diagnostics
from .llm_assist import identify_instrument_variable, validate_instrument_assumptions_qualitative, interpret_iv_results
logger = logging.getLogger(__name__)
def build_iv_graph_gml(treatment: str, outcome: str, instruments: List[str], covariates: List[str]) -> str:
"""
Constructs a GML string representing the causal graph for IV.
Assumptions:
- Instruments cause Treatment
- Covariates cause Treatment and Outcome
- Treatment causes Outcome
- Instruments do NOT directly cause Outcome (Exclusion)
- Instruments are NOT caused by Covariates (can be relaxed if needed)
- Unobserved Confounder (U) affects Treatment and Outcome
Args:
treatment: Name of the treatment variable.
outcome: Name of the outcome variable.
instruments: List of instrument variable names.
covariates: List of covariate names.
Returns:
A GML graph string.
"""
nodes = []
edges = []
# Define nodes - ensure no duplicates if a variable is both instrument and covariate (SHOULD NOT HAPPEN)
# Use a set to ensure unique variable names
all_vars_set = set([treatment, outcome] + instruments + covariates + ['U'])
all_vars = list(all_vars_set)
for var in all_vars:
nodes.append(f'node [ id "{var}" label "{var}" ]')
# Define edges
# Instruments -> Treatment
for inst in instruments:
edges.append(f'edge [ source "{inst}" target "{treatment}" ]')
# Covariates -> Treatment
for cov in covariates:
# Ensure we don't add self-loops or duplicate edges if cov == treatment (shouldn't happen)
if cov != treatment:
edges.append(f'edge [ source "{cov}" target "{treatment}" ]')
# Covariates -> Outcome
for cov in covariates:
if cov != outcome:
edges.append(f'edge [ source "{cov}" target "{outcome}" ]')
# Treatment -> Outcome
edges.append(f'edge [ source "{treatment}" target "{outcome}" ]')
# Unobserved Confounder -> Treatment and Outcome
edges.append(f'edge [ source "U" target "{treatment}" ]')
edges.append(f'edge [ source "U" target "{outcome}" ]')
# Core IV Assumption: Instruments are NOT caused by U (implicitly handled by not adding edge)
# Core IV Assumption: Instruments do NOT directly cause Outcome (handled by not adding edge)
# Format nodes and edges with indentation before inserting into f-string
formatted_nodes = '\n '.join(nodes)
formatted_edges = '\n '.join(edges)
gml_string = f"""
graph [
directed 1
{formatted_nodes}
{formatted_edges}
]
"""
# Convert print to logger
logger.debug("\n--- Generated GML Graph ---")
logger.debug(gml_string)
logger.debug("-------------------------\n")
return gml_string
def format_iv_results(estimate: Optional[float], raw_results: Dict, diagnostics: Dict, treatment: str, outcome: str, instrument: List[str], method_used: str, llm: Optional[BaseChatModel] = None) -> Dict[str, Any]:
"""
Formats the results from IV estimation into a standardized dictionary.
Args:
estimate: The point estimate of the causal effect.
raw_results: Dictionary containing raw outputs from DoWhy/statsmodels.
diagnostics: Dictionary containing diagnostic results.
treatment: Name of the treatment variable.
outcome: Name of the outcome variable.
instrument: List of instrument variable names.
method_used: 'dowhy' or 'statsmodels'.
llm: Optional LLM instance for interpretation.
Returns:
Standardized results dictionary.
"""
formatted = {
"effect_estimate": estimate,
"treatment_variable": treatment,
"outcome_variable": outcome,
"instrument_variables": instrument,
"method_used": method_used,
"diagnostics": diagnostics,
"raw_results": {k: str(v) for k, v in raw_results.items() if "object" not in k}, # Avoid serializing large objects
"confidence_interval": None,
"standard_error": None,
"p_value": None,
"interpretation": "Placeholder"
}
# Extract details from statsmodels results if available
sm_results = raw_results.get('statsmodels_results_object')
if method_used == 'statsmodels' and sm_results:
try:
# Use .bse for standard error in statsmodels results
formatted["standard_error"] = float(sm_results.bse[treatment])
formatted["p_value"] = float(sm_results.pvalues[treatment])
conf_int = sm_results.conf_int().loc[treatment].tolist()
formatted["confidence_interval"] = [float(ci) for ci in conf_int]
except AttributeError as e:
logger.warning(f"Could not extract all details from statsmodels results object (likely missing attribute): {e}")
except Exception as e:
logger.warning(f"Error extracting details from statsmodels results: {e}")
# Extract details from DoWhy results if available
# Note: DoWhy's CausalEstimate object structure needs inspection
dw_results = raw_results.get('dowhy_results_object')
if method_used == 'dowhy' and dw_results:
try:
# Attempt common attributes, may need adjustment based on DoWhy version/output
if hasattr(dw_results, 'stderr'):
formatted["standard_error"] = float(dw_results.stderr)
if hasattr(dw_results, 'p_value'):
formatted["p_value"] = float(dw_results.p_value)
if hasattr(dw_results, 'conf_intervals'):
# Assuming it's stored similarly to statsmodels, might need adjustment
ci = dw_results.conf_intervals().loc[treatment].tolist() # Fictional attribute/method - check DoWhy docs!
formatted["confidence_interval"] = [float(c) for c in ci]
elif hasattr(dw_results, 'get_confidence_intervals'):
ci = dw_results.get_confidence_intervals() # Check DoWhy docs for format
# Check format of ci before converting
if isinstance(ci, (list, tuple)) and len(ci) == 2:
formatted["confidence_interval"] = [float(c) for c in ci] # Adapt parsing
else:
logger.warning(f"Could not parse confidence intervals from DoWhy object: {ci}")
except Exception as e:
logger.warning(f"Could not extract all details from DoWhy results: {e}. Structure might be different.", exc_info=True)
# Avoid printing dir in production code, use logger.debug if needed for dev
# logger.debug(f"DoWhy result object dir(): {dir(dw_results)}")
# Generate LLM interpretation - pass llm object
if estimate is not None:
formatted["interpretation"] = interpret_iv_results(formatted, diagnostics, llm=llm)
else:
formatted["interpretation"] = "Estimation failed, cannot interpret results."
return formatted
def estimate_effect(
df: pd.DataFrame,
treatment: str,
outcome: str,
covariates: List[str],
query: Optional[str] = None,
dataset_description: Optional[str] = None,
llm: Optional[BaseChatModel] = None,
**kwargs
) -> Dict[str, Any]:
instrument = kwargs.get('instrument_variable')
if not instrument:
return {"error": "Instrument variable ('instrument_variable') not found in kwargs.", "method_used": "none", "diagnostics": {}}
instrument_list = [instrument] if isinstance(instrument, str) else instrument
valid_instruments = [inst for inst in instrument_list if isinstance(inst, str)]
clean_covariates = [cov for cov in covariates if cov not in valid_instruments]
logger.info(f"\n--- Starting Instrumental Variable Estimation ---")
logger.info(f"Treatment: {treatment}, Outcome: {outcome}, Instrument(s): {valid_instruments}, Original Covariates: {covariates}, Cleaned Covariates: {clean_covariates}")
results = {}
method_used = "none"
sm_results_obj = None
dw_results_obj = None
identified_estimand = None # Initialize
model = None # Initialize
refutation_results = {} # Initialize
# --- Input Validation ---
required_cols = [treatment, outcome] + valid_instruments + clean_covariates
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return {"error": f"Missing required columns in DataFrame: {missing_cols}", "method_used": method_used, "diagnostics": {}}
if not valid_instruments:
return {"error": "Instrument variable(s) must be provided and valid.", "method_used": method_used, "diagnostics": {}}
# --- LLM Pre-Checks ---
if query and llm:
qualitative_check = validate_instrument_assumptions_qualitative(treatment, outcome, valid_instruments, clean_covariates, query, llm=llm)
results['llm_assumption_check'] = qualitative_check
logger.info(f"LLM Qualitative Assumption Check: {qualitative_check}")
# --- Build Graph and Instantiate CausalModel (Do this before estimation attempts) ---
# This allows using identify_effect and refute_estimate even if DoWhy estimation fails
try:
graph = build_iv_graph_gml(treatment, outcome, valid_instruments, clean_covariates)
if not graph:
raise ValueError("Failed to build GML graph for DoWhy.")
model = CausalModel(data=df, treatment=treatment, outcome=outcome, graph=graph)
# Identify Effect (essential for refutation later)
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
logger.debug("\nDoWhy Identified Estimand:")
logger.debug(identified_estimand)
if not identified_estimand:
raise ValueError("DoWhy could not identify a valid estimand.")
except Exception as model_init_e:
logger.error(f"Failed to initialize CausalModel or identify effect: {model_init_e}", exc_info=True)
# Cannot proceed without model/estimand for DoWhy or refutation
results['error'] = f"Failed to initialize CausalModel: {model_init_e}"
# Attempt statsmodels anyway? Or return error? Let's try statsmodels.
pass # Allow falling through to statsmodels if desired
# --- Primary Path: DoWhy Estimation ---
if model and identified_estimand and not kwargs.get('force_statsmodels', False):
logger.info("\nAttempting estimation with DoWhy...")
try:
dw_results_obj = model.estimate_effect(
identified_estimand,
method_name="iv.instrumental_variable",
method_params={'iv_instrument_name': valid_instruments}
)
logger.debug("\nDoWhy Estimation Result:")
logger.debug(dw_results_obj)
results['dowhy_estimate'] = dw_results_obj.value
results['dowhy_results_object'] = dw_results_obj
method_used = 'dowhy'
logger.info("DoWhy estimation successful.")
except Exception as e:
logger.error(f"DoWhy IV estimation failed: {e}", exc_info=True)
results['dowhy_error'] = str(e)
if not kwargs.get('allow_fallback', True):
logger.warning("Fallback to statsmodels disabled. Estimation failed.")
method_used = "dowhy_failed"
# Still run diagnostics and format output
else:
logger.info("Proceeding to statsmodels fallback.")
elif not model or not identified_estimand:
logger.warning("Skipping DoWhy estimation due to CausalModel initialization/identification failure.")
# Ensure we proceed to statsmodels if fallback is allowed
if not kwargs.get('allow_fallback', True):
logger.error("Cannot estimate effect: CausalModel failed and fallback disabled.")
method_used = "dowhy_failed"
else:
logger.info("Proceeding to statsmodels fallback.")
# --- Fallback Path: statsmodels IV2SLS ---
if method_used not in ['dowhy', 'dowhy_failed']:
logger.info("\nAttempting estimation with statsmodels IV2SLS...")
try:
df_copy = df.copy().dropna(subset=required_cols)
if df_copy.empty:
raise ValueError("DataFrame becomes empty after dropping NAs in required columns.")
df_copy['intercept'] = 1
exog_regressors = ['intercept'] + clean_covariates
endog_var = treatment
all_instruments_for_sm = list(dict.fromkeys(exog_regressors + valid_instruments))
endog_data = df_copy[outcome]
exog_data_sm_cols = list(dict.fromkeys(exog_regressors + [endog_var]))
exog_data_sm = df_copy[exog_data_sm_cols]
instrument_data_sm = df_copy[all_instruments_for_sm]
num_endog = 1
num_external_iv = len(valid_instruments)
if num_endog > num_external_iv:
raise ValueError(f"Model underidentified: More endogenous regressors ({num_endog}) than unique external instruments ({num_external_iv}).")
iv_model = IV2SLS(endog=endog_data, exog=exog_data_sm, instrument=instrument_data_sm)
sm_results_obj = iv_model.fit()
logger.info("\nStatsmodels Estimation Summary:")
logger.info(f" Estimate for {treatment}: {sm_results_obj.params[treatment]}")
logger.info(f" Std Error: {sm_results_obj.bse[treatment]}")
logger.info(f" P-value: {sm_results_obj.pvalues[treatment]}")
results['statsmodels_estimate'] = sm_results_obj.params[treatment]
results['statsmodels_results_object'] = sm_results_obj
method_used = 'statsmodels'
logger.info("Statsmodels estimation successful.")
except Exception as sm_e:
logger.error(f"Statsmodels IV estimation also failed: {sm_e}", exc_info=True)
results['statsmodels_error'] = str(sm_e)
method_used = 'statsmodels_failed' if method_used == "none" else "dowhy_failed_sm_failed"
# --- Diagnostics ---
logger.info("\nRunning diagnostics...")
diagnostics = run_iv_diagnostics(df, treatment, outcome, valid_instruments, clean_covariates, sm_results_obj, dw_results_obj)
results['diagnostics'] = diagnostics
# --- Refutation Step ---
final_estimate_value = results.get('dowhy_estimate') if method_used == 'dowhy' else results.get('statsmodels_estimate')
# Only run permute refuter if estimate is valid AND came from DoWhy
if method_used == 'dowhy' and dw_results_obj and final_estimate_value is not None:
logger.info("\nRunning refutation test (Placebo Treatment - Permute - requires DoWhy estimate object)...")
try:
# Pass the actual DoWhy estimate object
refuter_result = model.refute_estimate(
identified_estimand,
dw_results_obj, # Pass the original DoWhy result object
method_name="placebo_treatment_refuter",
placebo_type="permute" # Necessary for IV according to docs/examples
)
logger.info("Refutation test completed.")
logger.debug(f"Refuter Result:\n{refuter_result}")
# Store relevant info from refuter_result (check its structure)
refutation_results = {
"refuter": "placebo_treatment_refuter",
"new_effect": getattr(refuter_result, 'new_effect', 'N/A'),
"p_value": getattr(refuter_result, 'refutation_result', {}).get('p_value', 'N/A') if hasattr(refuter_result, 'refutation_result') else 'N/A',
# Passed if p-value > 0.05 (or not statistically significant)
"passed": getattr(refuter_result, 'refutation_result', {}).get('is_statistically_significant', None) == False if hasattr(refuter_result, 'refutation_result') else None
}
except Exception as refute_e:
logger.error(f"Refutation test failed: {refute_e}", exc_info=True)
refutation_results = {"error": f"Refutation failed: {refute_e}"}
elif final_estimate_value is not None and method_used == 'statsmodels':
logger.warning("Skipping placebo permutation refuter: Estimate was generated by statsmodels, not DoWhy's IV estimator.")
refutation_results = {"status": "skipped_wrong_estimator_for_permute"}
elif final_estimate_value is None:
logger.warning("Skipping refutation test because estimation failed.")
refutation_results = {"status": "skipped_due_to_failed_estimation"}
else: # Model or estimand failed earlier, or unknown method_used
logger.warning(f"Skipping refutation test due to earlier failure (method_used: {method_used}).")
refutation_results = {"status": "skipped_due_to_model_failure_or_unknown"}
results['refutation_results'] = refutation_results # Add to main results
# --- Formatting Results ---
if final_estimate_value is None and method_used not in ['dowhy', 'statsmodels']:
logger.error("ERROR: Both estimation methods failed.")
# Ensure error key exists if not set earlier
if 'error' not in results:
results['error'] = "Both DoWhy and statsmodels IV estimation failed."
logger.info("\n--- Formatting Final Results ---")
formatted_results = format_iv_results(
final_estimate_value, # Pass the numeric value
results, # Pass the dict containing estimate objects and refutation results
diagnostics,
treatment,
outcome,
valid_instruments,
method_used,
llm=llm
)
logger.info("--- Instrumental Variable Estimation Complete ---\n")
return formatted_results |