File size: 13,510 Bytes
1721aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Method validator component for causal inference methods.

This module validates the selected causal inference method against
dataset characteristics and available variables.
"""

from typing import Dict, List, Any, Optional


def validate_method(method_info: Dict[str, Any], dataset_analysis: Dict[str, Any], 
                    variables: Dict[str, Any]) -> Dict[str, Any]:
    """
    Validate the selected causal method against dataset characteristics.
    
    Args:
        method_info: Information about the selected method from decision_tree
        dataset_analysis: Dataset analysis results from dataset_analyzer
        variables: Identified variables from query_interpreter
        
    Returns:
        Dict with validation results:
            - valid: Boolean indicating if method is valid
            - concerns: List of concerns/issues with the selected method
            - alternative_suggestions: Alternative methods if the selected method is problematic
            - recommended_method: Updated method recommendation if issues are found
    """
    method = method_info.get("selected_method")
    assumptions = method_info.get("method_assumptions", [])
    
    # Get required variables
    treatment = variables.get("treatment_variable")
    outcome = variables.get("outcome_variable")
    covariates = variables.get("covariates", [])
    time_variable = variables.get("time_variable")
    group_variable = variables.get("group_variable")
    instrument_variable = variables.get("instrument_variable")
    running_variable = variables.get("running_variable")
    cutoff_value = variables.get("cutoff_value")
    
    # Initialize validation result
    validation_result = {
        "valid": True,
        "concerns": [],
        "alternative_suggestions": [],
        "recommended_method": method,
    }
    
    # Common validations for all methods
    if treatment is None:
        validation_result["valid"] = False
        validation_result["concerns"].append("Treatment variable is not identified")
    
    if outcome is None:
        validation_result["valid"] = False
        validation_result["concerns"].append("Outcome variable is not identified")
    
    # Method-specific validations
    if method == "propensity_score_matching":
        validate_propensity_score_matching(validation_result, dataset_analysis, variables)
    
    elif method == "regression_adjustment":
        validate_regression_adjustment(validation_result, dataset_analysis, variables)
    
    elif method == "instrumental_variable":
        validate_instrumental_variable(validation_result, dataset_analysis, variables)
    
    elif method == "difference_in_differences":
        validate_difference_in_differences(validation_result, dataset_analysis, variables)
    
    elif method == "regression_discontinuity_design":
        validate_regression_discontinuity(validation_result, dataset_analysis, variables)
    
    elif method == "backdoor_adjustment":
        validate_backdoor_adjustment(validation_result, dataset_analysis, variables)
    
    # If there are serious concerns, recommend alternatives
    if not validation_result["valid"]:
        validation_result["recommended_method"] = recommend_alternative(
            method, validation_result["concerns"], method_info.get("alternatives", [])
        )
    
    # Make sure assumptions are listed in the validation result
    validation_result["assumptions"] = assumptions
    print("--------------------------")
    print("Validation result:", validation_result)
    print("--------------------------")
    return validation_result


def validate_propensity_score_matching(validation_result: Dict[str, Any], 
                                      dataset_analysis: Dict[str, Any],
                                      variables: Dict[str, Any]) -> None:
    """ 
    Validate propensity score matching method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """ 
    treatment = variables.get("treatment_variable")
    covariates = variables.get("covariates", [])
    
    # Check if treatment is binary using column_categories
    is_binary = dataset_analysis.get("column_categories", {}).get(treatment) == "binary"
    
    # Fallback to check if the column has only two unique values (0 and 1)
    if not is_binary:
        column_types = dataset_analysis.get("column_types", {})
        if column_types.get(treatment) == "int64" or column_types.get(treatment) == "int32":
            # Assuming int type with only 0s and 1s is binary
            is_binary = True
    
    if not is_binary:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "Treatment variable is not binary, which is required for propensity score matching"
        )
    
    # Check if there are sufficient covariates
    if len(covariates) < 2:
        validation_result["concerns"].append(
            "Few covariates identified, which may limit the effectiveness of propensity score matching"
        )
    
    # Check for sufficient overlap
    variable_relationships = dataset_analysis.get("variable_relationships", {})
    treatment_imbalance = variable_relationships.get("treatment_imbalance", 0.5)
    
    if treatment_imbalance < 0.1 or treatment_imbalance > 0.9:
        validation_result["concerns"].append(
            "Treatment groups are highly imbalanced, which may lead to poor matching quality"
        )
        validation_result["alternative_suggestions"].append("regression_adjustment")


def validate_regression_adjustment(validation_result: Dict[str, Any], 
                                 dataset_analysis: Dict[str, Any],
                                 variables: Dict[str, Any]) -> None:
    """
    Validate regression adjustment method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """
    outcome = variables.get("outcome_variable")
    
    # Check outcome type for appropriate regression model
    outcome_data = dataset_analysis.get("variable_types", {}).get(outcome, {})
    outcome_type = outcome_data.get("type")
    
    if outcome_type == "categorical" and outcome_data.get("n_categories", 0) > 2:
        validation_result["concerns"].append(
            "Outcome is categorical with multiple categories, which may require multinomial regression"
        )
    
    # Check for potential nonlinear relationships
    nonlinear_relationships = dataset_analysis.get("nonlinear_relationships", False)
    
    if nonlinear_relationships:
        validation_result["concerns"].append(
            "Potential nonlinear relationships detected, which may require more flexible models"
        )


def validate_instrumental_variable(validation_result: Dict[str, Any], 
                                 dataset_analysis: Dict[str, Any],
                                 variables: Dict[str, Any]) -> None:
    """
    Validate instrumental variable method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """
    instrument_variable = variables.get("instrument_variable")
    treatment = variables.get("treatment_variable")
    
    if instrument_variable is None:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No instrumental variable identified, which is required for this method"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")
        return
    
    # Check for instrument strength (correlation with treatment)
    variable_relationships = dataset_analysis.get("variable_relationships", {})
    instrument_correlation = next(
        (corr.get("correlation", 0) for corr in variable_relationships.get("correlations", [])
         if corr.get("var1") == instrument_variable and corr.get("var2") == treatment
         or corr.get("var1") == treatment and corr.get("var2") == instrument_variable),
        0
    )
    
    if abs(instrument_correlation) < 0.2:
        validation_result["concerns"].append(
            "Instrument appears weak (low correlation with treatment), which may lead to bias"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")


def validate_difference_in_differences(validation_result: Dict[str, Any], 
                                     dataset_analysis: Dict[str, Any],
                                     variables: Dict[str, Any]) -> None:
    """
    Validate difference-in-differences method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """
    time_variable = variables.get("time_variable")
    group_variable = variables.get("group_variable")
    
    if time_variable is None:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No time variable identified, which is required for difference-in-differences"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")
    
    if group_variable is None:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No group variable identified, which is required for difference-in-differences"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")
    
    # Check for parallel trends
    temporal_structure = dataset_analysis.get("temporal_structure", {})
    parallel_trends = temporal_structure.get("parallel_trends", False)
    
    if not parallel_trends:
        validation_result["concerns"].append(
            "No evidence of parallel trends, which is a key assumption for difference-in-differences"
        )
        validation_result["alternative_suggestions"].append("synthetic_control")


def validate_regression_discontinuity(validation_result: Dict[str, Any], 
                                    dataset_analysis: Dict[str, Any],
                                    variables: Dict[str, Any]) -> None:
    """
    Validate regression discontinuity method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """ 
    running_variable = variables.get("running_variable")
    cutoff_value = variables.get("cutoff_value")
    
    if running_variable is None:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No running variable identified, which is required for regression discontinuity"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")
    
    if cutoff_value is None:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No cutoff value identified, which is required for regression discontinuity"
        )
        validation_result["alternative_suggestions"].append("propensity_score_matching")
    
    # Check for discontinuity at threshold
    discontinuities = dataset_analysis.get("discontinuities", {})
    has_discontinuity = discontinuities.get("has_discontinuities", False)
    
    if not has_discontinuity:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No clear discontinuity detected at the threshold, which is necessary for this method"
        )
        validation_result["alternative_suggestions"].append("regression_adjustment") 

def validate_backdoor_adjustment(validation_result: Dict[str, Any], 
                               dataset_analysis: Dict[str, Any],
                               variables: Dict[str, Any]) -> None:
    """
    Validate backdoor adjustment method requirements.
    
    Args:
        validation_result: Current validation result to update
        dataset_analysis: Dataset analysis results
        variables: Identified variables
    """
    covariates = variables.get("covariates", [])
    
    if len(covariates) == 0:
        validation_result["valid"] = False
        validation_result["concerns"].append(
            "No covariates identified for backdoor adjustment"
        )
        validation_result["alternative_suggestions"].append("regression_adjustment")


def recommend_alternative(method: str, concerns: List[str], alternatives: List[str]) -> str:
    """
    Recommend an alternative method if the current one has issues.
    
    Args:
        method: Current method
        concerns: List of concerns with the current method
        alternatives: List of alternative methods suggested by the decision tree
        
    Returns:
        String with the recommended method
    """
    # If there are alternatives, recommend the first one
    if alternatives:
        return alternatives[0]
    
    # If no alternatives, use regression adjustment as a fallback
    if method != "regression_adjustment":
        return "regression_adjustment"
    
    # If regression adjustment is also problematic, use propensity score matching
    return "propensity_score_matching"