Spaces:
Running
Running
File size: 12,502 Bytes
efbcc96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# -*- coding: utf-8 -*-
"""
Render a JSON-aware visualization of CAIS's rule-based method selector.
- Parses a CAIS run payload (dict) and highlights ALL plausible candidates (green).
- The actually selected method receives a thicker border.
- The traversed decision path edges are colored.
Usage:
render_from_json(payload_dict, out_stem="artifacts/decision_tree")
(Optional) CLI:
python decision_tree.py payload.json
"""
from graphviz import Digraph
import json, sys
from typing import Dict, Any, List, Set, Tuple, Optional
from auto_causal.components.decision_tree import (
DIFF_IN_MEANS, LINEAR_REGRESSION, DIFF_IN_DIFF, REGRESSION_DISCONTINUITY,
INSTRUMENTAL_VARIABLE, PROPENSITY_SCORE_MATCHING, PROPENSITY_SCORE_WEIGHTING,
GENERALIZED_PROPENSITY_SCORE, BACKDOOR_ADJUSTMENT, FRONTDOOR_ADJUSTMENT
)
LABEL = {
DIFF_IN_MEANS: "Diff-in-Means (RCT)",
LINEAR_REGRESSION: "Linear Regression",
DIFF_IN_DIFF: "Difference-in-Differences",
REGRESSION_DISCONTINUITY: "Regression Discontinuity",
INSTRUMENTAL_VARIABLE: "Instrumental Variables",
PROPENSITY_SCORE_MATCHING: "PS Matching",
PROPENSITY_SCORE_WEIGHTING: "PS Weighting",
GENERALIZED_PROPENSITY_SCORE: "Generalized PS (continuous T)",
BACKDOOR_ADJUSTMENT: "Backdoor Adjustment",
FRONTDOOR_ADJUSTMENT: "Frontdoor Adjustment",
}
# -------- Heuristic extractors from payload -------- #
def _get(d: Dict, path: List[str], default=None):
cur = d
for k in path:
if not isinstance(cur, dict) or k not in cur:
return default
cur = cur[k]
return cur
def extract_signals(p: Dict[str, Any]) -> Dict[str, Any]:
vars_ = _get(p, ["results", "variables"], {}) or _get(p, ["variables"], {}) or {}
da = _get(p, ["results", "dataset_analysis"], {}) or _get(p, ["dataset_analysis"], {}) or {}
treatment = vars_.get("treatment_variable")
t_type = vars_.get("treatment_variable_type") # "binary"/"continuous"
is_rct = bool(vars_.get("is_rct", False))
# Temporal / panel
temporal_detected = bool(da.get("temporal_structure_detected", False))
time_var = vars_.get("time_variable")
group_var = vars_.get("group_variable")
has_temporal = temporal_detected or bool(time_var) or bool(group_var)
# RDD
running_variable = vars_.get("running_variable")
cutoff_value = vars_.get("cutoff_value")
rdd_ready = running_variable is not None and cutoff_value is not None
# (Some detectors raise 'discontinuities_detected', but we still require running var + cutoff.)
# If you want permissive behavior, flip rdd_ready to also consider da.get("discontinuities_detected").
# Instruments
instrument = vars_.get("instrument_variable")
pot_instr = da.get("potential_instruments") or []
# Consider an instrument valid only if it exists and is NOT the treatment itself
has_valid_instrument = (
instrument is not None and instrument != treatment
) or any(pi and pi != treatment for pi in pot_instr)
covariates = vars_.get("covariates") or []
has_covariates = len(covariates) > 0
# Frontdoor: only mark if explicitly provided (else too speculative)
frontdoor_ok = bool(_get(p, ["results", "dataset_analysis", "frontdoor_satisfied"], False))
# Overlap: if explicitly known, use it; else unknown β both PS variants remain plausible.
overlap_assessment = da.get("overlap_assessment")
strong_overlap = None
if isinstance(overlap_assessment, dict):
# accept typical keys like {"strong_overlap": true}
strong_overlap = overlap_assessment.get("strong_overlap")
return dict(
treatment=treatment,
t_type=t_type,
is_rct=is_rct,
has_temporal=has_temporal,
rdd_ready=rdd_ready,
has_valid_instrument=has_valid_instrument,
has_covariates=has_covariates,
frontdoor_ok=frontdoor_ok,
strong_overlap=strong_overlap,
)
# -------- Candidate inference (green leaves) -------- #
def infer_candidate_methods(signals: Dict[str, Any]) -> Set[str]:
cands: Set[str] = set()
is_rct = signals["is_rct"]
# RCT branch: both Diff-in-Means and LR are valid analyses; IV only if a valid instrument exists (e.g., randomized encouragement)
if is_rct:
cands.add(DIFF_IN_MEANS)
if signals["has_covariates"]:
cands.add(LINEAR_REGRESSION)
if signals["has_valid_instrument"]:
cands.add(INSTRUMENTAL_VARIABLE)
return cands # stop here; the observational tree is not needed
# Observational branch
if signals["has_temporal"]:
cands.add(DIFF_IN_DIFF)
if signals["rdd_ready"]:
cands.add(REGRESSION_DISCONTINUITY)
if signals["has_valid_instrument"]:
cands.add(INSTRUMENTAL_VARIABLE)
if signals["frontdoor_ok"]:
cands.add(FRONTDOOR_ADJUSTMENT)
# Treatment type
if str(signals["t_type"]).lower() == "continuous":
cands.add(GENERALIZED_PROPENSITY_SCORE)
# Backdoor / PS (need covariates)
if signals["has_covariates"]:
# If overlap is known, choose one; if unknown, mark both as plausible.
if signals["strong_overlap"] is True:
cands.add(PROPENSITY_SCORE_MATCHING)
elif signals["strong_overlap"] is False:
cands.add(PROPENSITY_SCORE_WEIGHTING)
else:
cands.add(PROPENSITY_SCORE_MATCHING)
cands.add(PROPENSITY_SCORE_WEIGHTING)
cands.add(BACKDOOR_ADJUSTMENT)
return cands
# -------- Compute the single realized path to the chosen leaf (for edge coloring) -------- #
def infer_decision_path(signals: Dict[str, Any], selected_method: Optional[str]) -> List[Tuple[str, str]]:
path: List[Tuple[str, str]] = []
# Start β is_rct
path.append(("start", "is_rct"))
if signals["is_rct"]:
path.append(("is_rct", "has_instr_rct"))
if signals["has_valid_instrument"]:
path.append(("has_instr_rct", INSTRUMENTAL_VARIABLE))
else:
path.append(("has_instr_rct", "has_cov_rct"))
if signals["has_covariates"]:
path.append(("has_cov_rct", LINEAR_REGRESSION))
else:
path.append(("has_cov_rct", DIFF_IN_MEANS))
return path
# Observational
path.append(("is_rct", "has_temporal"))
if signals["has_temporal"]:
path.append(("has_temporal", DIFF_IN_DIFF))
return path
else:
path.append(("has_temporal", "has_rv"))
if signals["rdd_ready"]:
path.append(("has_rv", REGRESSION_DISCONTINUITY))
return path
else:
path.append(("has_rv", "has_instr"))
if signals["has_valid_instrument"]:
path.append(("has_instr", INSTRUMENTAL_VARIABLE))
return path
else:
path.append(("has_instr", "frontdoor"))
if signals["frontdoor_ok"]:
path.append(("frontdoor", FRONTDOOR_ADJUSTMENT))
return path
else:
path.append(("frontdoor", "t_cont"))
if str(signals["t_type"]).lower() == "continuous":
path.append(("t_cont", GENERALIZED_PROPENSITY_SCORE))
return path
else:
path.append(("t_cont", "has_cov"))
if signals["has_covariates"]:
path.append(("has_cov", "overlap"))
# If overlap known, pick the branch; else default to weighting.
if signals["strong_overlap"] is True:
path.append(("overlap", PROPENSITY_SCORE_MATCHING))
else:
path.append(("overlap", PROPENSITY_SCORE_WEIGHTING))
else:
path.append(("has_cov", BACKDOOR_ADJUSTMENT)) # keep original topology; see note in previous message
return path
# -------- Graph building -------- #
def build_graph(payload: Dict[str, Any]) -> Digraph:
g = Digraph("CAISDecisionTree", format="svg")
g.attr(rankdir="LR", nodesep="0.4", ranksep="0.35", fontsize="11")
# Decisions
g.node("start", "Start", shape="circle")
g.node("is_rct", "Is RCT?", shape="diamond")
g.node("has_instr_rct", "Instrument available?", shape="diamond")
g.node("has_cov_rct", "Covariates observed?", shape="diamond")
g.node("has_temporal", "Temporal structure?", shape="diamond")
g.node("has_rv", "Running var & cutoff?", shape="diamond")
g.node("has_instr", "Instrument available?", shape="diamond")
g.node("frontdoor", "Frontdoor criterion satisfied?", shape="diamond")
g.node("has_cov", "Covariates observed?", shape="diamond")
g.node("overlap", "Strong overlap?\n(overlap β₯ 0.1)", shape="diamond")
g.node("t_cont", "Treatment continuous?", shape="diamond")
# Leaves
def leaf(name_const, fill=None, bold=False):
attrs = {"shape": "box", "style": "rounded"}
if fill:
attrs.update(style="rounded,filled", fillcolor=fill)
if bold:
attrs.update(penwidth="2")
g.node(name_const, LABEL[name_const], **attrs)
# Compute signals, candidates, path
signals = extract_signals(payload)
candidates = infer_candidate_methods(signals)
selected_method_str = _get(payload, ["results", "results", "method_used"]) \
or _get(payload, ["results", "method_used"]) \
or _get(payload, ["method"])
selected_method = {
"linear_regression": LINEAR_REGRESSION,
"diff_in_means": DIFF_IN_MEANS,
"difference_in_differences": DIFF_IN_DIFF,
"regression_discontinuity": REGRESSION_DISCONTINUITY,
"instrumental_variable": INSTRUMENTAL_VARIABLE,
"propensity_score_matching": PROPENSITY_SCORE_MATCHING,
"propensity_score_weighting": PROPENSITY_SCORE_WEIGHTING,
"generalized_propensity_score": GENERALIZED_PROPENSITY_SCORE,
"backdoor_adjustment": BACKDOOR_ADJUSTMENT,
"frontdoor_adjustment": FRONTDOOR_ADJUSTMENT,
}.get(str(selected_method_str or "").lower())
# Add leaves with coloring
for m in [
DIFF_IN_MEANS, LINEAR_REGRESSION, DIFF_IN_DIFF, REGRESSION_DISCONTINUITY,
INSTRUMENTAL_VARIABLE, PROPENSITY_SCORE_MATCHING, PROPENSITY_SCORE_WEIGHTING,
GENERALIZED_PROPENSITY_SCORE, BACKDOOR_ADJUSTMENT, FRONTDOOR_ADJUSTMENT
]:
leaf(m,
fill=("palegreen" if m in candidates else None),
bold=(m == selected_method))
# Edges with optional path highlighting
path_edges = set(infer_decision_path(signals, selected_method))
def e(u, v, label=None):
attrs = {}
if (u, v) in path_edges:
attrs.update(color="forestgreen", penwidth="2")
g.edge(u, v, **({} if label is None else {"label": label}) | attrs)
# Topology (unchanged)
e("start", "is_rct")
# RCT branch
e("is_rct", "has_instr_rct", label="Yes")
e("has_instr_rct", INSTRUMENTAL_VARIABLE, label="Yes")
e("has_instr_rct", "has_cov_rct", label="No")
e("has_cov_rct", LINEAR_REGRESSION, label="Yes")
e("has_cov_rct", DIFF_IN_MEANS, label="No")
# Observational branch
e("is_rct", "has_temporal", label="No")
e("has_temporal", DIFF_IN_DIFF, label="Yes")
e("has_temporal", "has_rv", label="No")
e("has_rv", REGRESSION_DISCONTINUITY, label="Yes")
e("has_rv", "has_instr", label="No")
e("has_instr", INSTRUMENTAL_VARIABLE, label="Yes")
e("has_instr", "frontdoor", label="No")
e("frontdoor", FRONTDOOR_ADJUSTMENT, label="Yes")
e("frontdoor", "t_cont", label="No")
e("t_cont", GENERALIZED_PROPENSITY_SCORE, label="Yes")
e("t_cont", "has_cov", label="No")
e("has_cov", "overlap", label="Yes")
e("has_cov", BACKDOOR_ADJUSTMENT, label="No")
e("overlap", PROPENSITY_SCORE_MATCHING, label="Yes")
e("overlap", PROPENSITY_SCORE_WEIGHTING, label="No")
# Optional legend
g.node("legend", "Legend:\nGreen = plausible candidate(s)\nBold border = method used", shape="note")
g.edge("legend", "start", style="dashed", arrowhead="none")
return g
def render_from_json(payload: Dict[str, Any], out_stem: str = "artifacts/decision_tree"):
g = build_graph(payload)
g.save(filename=f"{out_stem}.dot")
g.render(filename=out_stem, cleanup=True) # SVG
g.format = "png"
g.render(filename=out_stem, cleanup=True) # PNG
def main():
# if len(sys.argv) >= 2:
with open('sample_output.json', "r") as f:
payload = json.load(f)
# else:
# payload = json.load()
render_from_json(payload)
if __name__ == "__main__":
main()
|