File size: 12,502 Bytes
efbcc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding: utf-8 -*-
"""
Render a JSON-aware visualization of CAIS's rule-based method selector.
- Parses a CAIS run payload (dict) and highlights ALL plausible candidates (green).
- The actually selected method receives a thicker border.
- The traversed decision path edges are colored.

Usage:
    render_from_json(payload_dict, out_stem="artifacts/decision_tree")

(Optional) CLI:
    python decision_tree.py payload.json
"""

from graphviz import Digraph
import json, sys
from typing import Dict, Any, List, Set, Tuple, Optional

from auto_causal.components.decision_tree import (
    DIFF_IN_MEANS, LINEAR_REGRESSION, DIFF_IN_DIFF, REGRESSION_DISCONTINUITY,
    INSTRUMENTAL_VARIABLE, PROPENSITY_SCORE_MATCHING, PROPENSITY_SCORE_WEIGHTING,
    GENERALIZED_PROPENSITY_SCORE, BACKDOOR_ADJUSTMENT, FRONTDOOR_ADJUSTMENT
)

LABEL = {
    DIFF_IN_MEANS: "Diff-in-Means (RCT)",
    LINEAR_REGRESSION: "Linear Regression",
    DIFF_IN_DIFF: "Difference-in-Differences",
    REGRESSION_DISCONTINUITY: "Regression Discontinuity",
    INSTRUMENTAL_VARIABLE: "Instrumental Variables",
    PROPENSITY_SCORE_MATCHING: "PS Matching",
    PROPENSITY_SCORE_WEIGHTING: "PS Weighting",
    GENERALIZED_PROPENSITY_SCORE: "Generalized PS (continuous T)",
    BACKDOOR_ADJUSTMENT: "Backdoor Adjustment",
    FRONTDOOR_ADJUSTMENT: "Frontdoor Adjustment",
}

# -------- Heuristic extractors from payload -------- #

def _get(d: Dict, path: List[str], default=None):
    cur = d
    for k in path:
        if not isinstance(cur, dict) or k not in cur:
            return default
        cur = cur[k]
    return cur

def extract_signals(p: Dict[str, Any]) -> Dict[str, Any]:
    vars_ = _get(p, ["results", "variables"], {}) or _get(p, ["variables"], {}) or {}
    da   = _get(p, ["results", "dataset_analysis"], {}) or _get(p, ["dataset_analysis"], {}) or {}

    treatment = vars_.get("treatment_variable")
    t_type    = vars_.get("treatment_variable_type")            # "binary"/"continuous"
    is_rct    = bool(vars_.get("is_rct", False))

    # Temporal / panel
    temporal_detected = bool(da.get("temporal_structure_detected", False))
    time_var = vars_.get("time_variable")
    group_var = vars_.get("group_variable")
    has_temporal = temporal_detected or bool(time_var) or bool(group_var)

    # RDD
    running_variable = vars_.get("running_variable")
    cutoff_value     = vars_.get("cutoff_value")
    rdd_ready        = running_variable is not None and cutoff_value is not None
    # (Some detectors raise 'discontinuities_detected', but we still require running var + cutoff.)
    # If you want permissive behavior, flip rdd_ready to also consider da.get("discontinuities_detected").

    # Instruments
    instrument = vars_.get("instrument_variable")
    pot_instr  = da.get("potential_instruments") or []
    # Consider an instrument valid only if it exists and is NOT the treatment itself
    has_valid_instrument = (
        instrument is not None and instrument != treatment
    ) or any(pi and pi != treatment for pi in pot_instr)

    covariates = vars_.get("covariates") or []
    has_covariates = len(covariates) > 0

    # Frontdoor: only mark if explicitly provided (else too speculative)
    frontdoor_ok = bool(_get(p, ["results", "dataset_analysis", "frontdoor_satisfied"], False))

    # Overlap: if explicitly known, use it; else unknown β†’ both PS variants remain plausible.
    overlap_assessment = da.get("overlap_assessment")
    strong_overlap = None
    if isinstance(overlap_assessment, dict):
        # accept typical keys like {"strong_overlap": true}
        strong_overlap = overlap_assessment.get("strong_overlap")

    return dict(
        treatment=treatment,
        t_type=t_type,
        is_rct=is_rct,
        has_temporal=has_temporal,
        rdd_ready=rdd_ready,
        has_valid_instrument=has_valid_instrument,
        has_covariates=has_covariates,
        frontdoor_ok=frontdoor_ok,
        strong_overlap=strong_overlap,
    )

# -------- Candidate inference (green leaves) -------- #

def infer_candidate_methods(signals: Dict[str, Any]) -> Set[str]:
    cands: Set[str] = set()
    is_rct = signals["is_rct"]

    # RCT branch: both Diff-in-Means and LR are valid analyses; IV only if a valid instrument exists (e.g., randomized encouragement)
    if is_rct:
        cands.add(DIFF_IN_MEANS)
        if signals["has_covariates"]:
            cands.add(LINEAR_REGRESSION)
        if signals["has_valid_instrument"]:
            cands.add(INSTRUMENTAL_VARIABLE)
        return cands  # stop here; the observational tree is not needed

    # Observational branch
    if signals["has_temporal"]:
        cands.add(DIFF_IN_DIFF)
    if signals["rdd_ready"]:
        cands.add(REGRESSION_DISCONTINUITY)
    if signals["has_valid_instrument"]:
        cands.add(INSTRUMENTAL_VARIABLE)
    if signals["frontdoor_ok"]:
        cands.add(FRONTDOOR_ADJUSTMENT)

    # Treatment type
    if str(signals["t_type"]).lower() == "continuous":
        cands.add(GENERALIZED_PROPENSITY_SCORE)

    # Backdoor / PS (need covariates)
    if signals["has_covariates"]:
        # If overlap is known, choose one; if unknown, mark both as plausible.
        if signals["strong_overlap"] is True:
            cands.add(PROPENSITY_SCORE_MATCHING)
        elif signals["strong_overlap"] is False:
            cands.add(PROPENSITY_SCORE_WEIGHTING)
        else:
            cands.add(PROPENSITY_SCORE_MATCHING)
            cands.add(PROPENSITY_SCORE_WEIGHTING)
        cands.add(BACKDOOR_ADJUSTMENT)

    return cands

# -------- Compute the single realized path to the chosen leaf (for edge coloring) -------- #

def infer_decision_path(signals: Dict[str, Any], selected_method: Optional[str]) -> List[Tuple[str, str]]:
    path: List[Tuple[str, str]] = []
    # Start β†’ is_rct
    path.append(("start", "is_rct"))

    if signals["is_rct"]:
        path.append(("is_rct", "has_instr_rct"))
        if signals["has_valid_instrument"]:
            path.append(("has_instr_rct", INSTRUMENTAL_VARIABLE))
        else:
            path.append(("has_instr_rct", "has_cov_rct"))
            if signals["has_covariates"]:
                path.append(("has_cov_rct", LINEAR_REGRESSION))
            else:
                path.append(("has_cov_rct", DIFF_IN_MEANS))
        return path

    # Observational
    path.append(("is_rct", "has_temporal"))
    if signals["has_temporal"]:
        path.append(("has_temporal", DIFF_IN_DIFF))
        return path
    else:
        path.append(("has_temporal", "has_rv"))

    if signals["rdd_ready"]:
        path.append(("has_rv", REGRESSION_DISCONTINUITY))
        return path
    else:
        path.append(("has_rv", "has_instr"))

    if signals["has_valid_instrument"]:
        path.append(("has_instr", INSTRUMENTAL_VARIABLE))
        return path
    else:
        path.append(("has_instr", "frontdoor"))

    if signals["frontdoor_ok"]:
        path.append(("frontdoor", FRONTDOOR_ADJUSTMENT))
        return path
    else:
        path.append(("frontdoor", "t_cont"))

    if str(signals["t_type"]).lower() == "continuous":
        path.append(("t_cont", GENERALIZED_PROPENSITY_SCORE))
        return path
    else:
        path.append(("t_cont", "has_cov"))

    if signals["has_covariates"]:
        path.append(("has_cov", "overlap"))
        # If overlap known, pick the branch; else default to weighting.
        if signals["strong_overlap"] is True:
            path.append(("overlap", PROPENSITY_SCORE_MATCHING))
        else:
            path.append(("overlap", PROPENSITY_SCORE_WEIGHTING))
    else:
        path.append(("has_cov", BACKDOOR_ADJUSTMENT))  # keep original topology; see note in previous message
    return path

# -------- Graph building -------- #

def build_graph(payload: Dict[str, Any]) -> Digraph:
    g = Digraph("CAISDecisionTree", format="svg")
    g.attr(rankdir="LR", nodesep="0.4", ranksep="0.35", fontsize="11")

    # Decisions
    g.node("start", "Start", shape="circle")
    g.node("is_rct", "Is RCT?", shape="diamond")
    g.node("has_instr_rct", "Instrument available?", shape="diamond")
    g.node("has_cov_rct", "Covariates observed?", shape="diamond")
    g.node("has_temporal", "Temporal structure?", shape="diamond")
    g.node("has_rv", "Running var & cutoff?", shape="diamond")
    g.node("has_instr", "Instrument available?", shape="diamond")
    g.node("frontdoor", "Frontdoor criterion satisfied?", shape="diamond")
    g.node("has_cov", "Covariates observed?", shape="diamond")
    g.node("overlap", "Strong overlap?\n(overlap β‰₯ 0.1)", shape="diamond")
    g.node("t_cont", "Treatment continuous?", shape="diamond")

    # Leaves
    def leaf(name_const, fill=None, bold=False):
        attrs = {"shape": "box", "style": "rounded"}
        if fill:
            attrs.update(style="rounded,filled", fillcolor=fill)
        if bold:
            attrs.update(penwidth="2")
        g.node(name_const, LABEL[name_const], **attrs)

    # Compute signals, candidates, path
    signals = extract_signals(payload)
    candidates = infer_candidate_methods(signals)

    selected_method_str = _get(payload, ["results", "results", "method_used"]) \
                          or _get(payload, ["results", "method_used"]) \
                          or _get(payload, ["method"])
    selected_method = {
        "linear_regression": LINEAR_REGRESSION,
        "diff_in_means": DIFF_IN_MEANS,
        "difference_in_differences": DIFF_IN_DIFF,
        "regression_discontinuity": REGRESSION_DISCONTINUITY,
        "instrumental_variable": INSTRUMENTAL_VARIABLE,
        "propensity_score_matching": PROPENSITY_SCORE_MATCHING,
        "propensity_score_weighting": PROPENSITY_SCORE_WEIGHTING,
        "generalized_propensity_score": GENERALIZED_PROPENSITY_SCORE,
        "backdoor_adjustment": BACKDOOR_ADJUSTMENT,
        "frontdoor_adjustment": FRONTDOOR_ADJUSTMENT,
    }.get(str(selected_method_str or "").lower())

    # Add leaves with coloring
    for m in [
        DIFF_IN_MEANS, LINEAR_REGRESSION, DIFF_IN_DIFF, REGRESSION_DISCONTINUITY,
        INSTRUMENTAL_VARIABLE, PROPENSITY_SCORE_MATCHING, PROPENSITY_SCORE_WEIGHTING,
        GENERALIZED_PROPENSITY_SCORE, BACKDOOR_ADJUSTMENT, FRONTDOOR_ADJUSTMENT
    ]:
        leaf(m,
             fill=("palegreen" if m in candidates else None),
             bold=(m == selected_method))

    # Edges with optional path highlighting
    path_edges = set(infer_decision_path(signals, selected_method))
    def e(u, v, label=None):
        attrs = {}
        if (u, v) in path_edges:
            attrs.update(color="forestgreen", penwidth="2")
        g.edge(u, v, **({} if label is None else {"label": label}) | attrs)

    # Topology (unchanged)
    e("start", "is_rct")

    # RCT branch
    e("is_rct", "has_instr_rct", label="Yes")
    e("has_instr_rct", INSTRUMENTAL_VARIABLE, label="Yes")
    e("has_instr_rct", "has_cov_rct", label="No")
    e("has_cov_rct", LINEAR_REGRESSION, label="Yes")
    e("has_cov_rct", DIFF_IN_MEANS, label="No")

    # Observational branch
    e("is_rct", "has_temporal", label="No")
    e("has_temporal", DIFF_IN_DIFF, label="Yes")
    e("has_temporal", "has_rv", label="No")

    e("has_rv", REGRESSION_DISCONTINUITY, label="Yes")
    e("has_rv", "has_instr", label="No")

    e("has_instr", INSTRUMENTAL_VARIABLE, label="Yes")
    e("has_instr", "frontdoor", label="No")

    e("frontdoor", FRONTDOOR_ADJUSTMENT, label="Yes")
    e("frontdoor", "t_cont", label="No")

    e("t_cont", GENERALIZED_PROPENSITY_SCORE, label="Yes")
    e("t_cont", "has_cov", label="No")

    e("has_cov", "overlap", label="Yes")
    e("has_cov", BACKDOOR_ADJUSTMENT, label="No")

    e("overlap", PROPENSITY_SCORE_MATCHING, label="Yes")
    e("overlap", PROPENSITY_SCORE_WEIGHTING, label="No")

    # Optional legend
    g.node("legend", "Legend:\nGreen = plausible candidate(s)\nBold border = method used", shape="note")
    g.edge("legend", "start", style="dashed", arrowhead="none")

    return g

def render_from_json(payload: Dict[str, Any], out_stem: str = "artifacts/decision_tree"):
    g = build_graph(payload)
    g.save(filename=f"{out_stem}.dot")
    g.render(filename=out_stem, cleanup=True)         # SVG
    g.format = "png"
    g.render(filename=out_stem, cleanup=True)         # PNG

def main():
    # if len(sys.argv) >= 2:
    with open('sample_output.json', "r") as f:
        payload = json.load(f)
    # else:
    # payload = json.load()
    render_from_json(payload)

if __name__ == "__main__":
    main()