File size: 13,506 Bytes
1721aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import sys
import json
from pathlib import Path
import gradio as gr
import time

# Make your repo importable (expecting a folder named causal-agent at repo root)
sys.path.append(str(Path(__file__).parent / "causal-agent"))

from auto_causal.agent import run_causal_analysis  # uses env for provider/model

# -------- LLM config (OpenAI only; key via HF Secrets) --------
os.environ.setdefault("LLM_PROVIDER", "openai")
os.environ.setdefault("LLM_MODEL", "gpt-4o")

# Lazy import to avoid import-time errors if key missing
def _get_openai_client():
    if os.getenv("LLM_PROVIDER", "openai") != "openai":
        raise RuntimeError("Only LLM_PROVIDER=openai is supported in this demo.")
    if not os.getenv("OPENAI_API_KEY"):
        raise RuntimeError("Missing OPENAI_API_KEY (set as a Space Secret).")
    try:
        # OpenAI SDK v1+
        from openai import OpenAI
        return OpenAI()
    except Exception as e:
        raise RuntimeError(f"OpenAI SDK not available: {e}")

# -------- System prompt you asked for (verbatim) --------
SYSTEM_PROMPT = """You are an expert in statistics and causal inference.
You will be given:
1) The original research question.
2) The analysis method used.
3) The estimated effects, confidence intervals, standard errors, and p-values for each treatment group compared to the control group.
4) A brief dataset description.

Your task is to produce a clear, concise, and non-technical summary that:
- Directly answers the research question.
- States whether the effect is statistically significant.
- Quantifies the effect size and explains what it means in practical terms (e.g., percentage point change).
- Mentions the method used in one sentence.
- Optionally ranks the treatment effects from largest to smallest if multiple treatments exist.

Formatting rules:
- Use bullet points or short paragraphs.
- Report effect sizes to two decimal places.
- Clearly state the interpretation in plain English without technical jargon.

Example Output Structure:
- **Method:** [Name of method + 1-line rationale]
- **Key Finding:** [Main answer to the research question]
- **Details:**
  - [Treatment name]: +X.XX percentage points (95% CI: [L, U]), p < 0.001 β€” [Significance comment]
  - …
- **Rank Order of Effects:** [Largest β†’ Smallest]
"""

def _extract_minimal_payload(agent_result: dict) -> dict:
    """
    Extract the minimal, LLM-friendly payload from run_causal_analysis output.
    Falls back gracefully if any fields are missing.
    """
    # Try both top-level and nested (your JSON showed both patterns)
    res = agent_result or {}
    results = res.get("results", {}) if isinstance(res.get("results"), dict) else {}
    inner = results.get("results", {}) if isinstance(results.get("results"), dict) else {}
    vars_ = results.get("variables", {}) if isinstance(results.get("variables"), dict) else {}
    dataset_analysis = results.get("dataset_analysis", {}) if isinstance(results.get("dataset_analysis"), dict) else {}

    # Pull best-available fields
    question = (
        results.get("original_query")
        or dataset_analysis.get("original_query")
        or res.get("query")
        or "N/A"
    )
    method = (
        inner.get("method_used")
        or res.get("method_used")
        or results.get("method_used")
        or "N/A"
    )

    effect_estimate = (
        inner.get("effect_estimate")
        or res.get("effect_estimate")
        or {}
    )
    confidence_interval = (
        inner.get("confidence_interval")
        or res.get("confidence_interval")
        or {}
    )
    standard_error = (
        inner.get("standard_error")
        or res.get("standard_error")
        or {}
    )
    p_value = (
        inner.get("p_value")
        or res.get("p_value")
        or {}
    )

    dataset_desc = (
        results.get("dataset_description")
        or res.get("dataset_description")
        or "N/A"
    )

    return {
        "original_question": question,
        "method_used": method,
        "estimates": {
            "effect_estimate": effect_estimate,
            "confidence_interval": confidence_interval,
            "standard_error": standard_error,
            "p_value": p_value,
        },
        "dataset_description": dataset_desc,
    }

def _format_effects_md(effect_estimate: dict) -> str:
    """
    Minimal human-readable view of effect estimates for display.
    """
    if not effect_estimate or not isinstance(effect_estimate, dict):
        return "_No effect estimates found._"
    # Render as bullet list
    lines = []
    for k, v in effect_estimate.items():
        try:
            lines.append(f"- **{k}**: {float(v):+.4f}")
        except Exception:
            lines.append(f"- **{k}**: {v}")
    return "\n".join(lines)

def _summarize_with_llm(payload: dict) -> str:
    """
    Calls OpenAI with the provided SYSTEM_PROMPT and the JSON payload as the user message.
    Returns the model's text, or raises on error.
    """
    client = _get_openai_client()
    model_name = os.getenv("LLM_MODEL", "gpt-4o-mini")

    user_content = (
        "Summarize the following causal analysis results:\n\n"
        + json.dumps(payload, indent=2, ensure_ascii=False)
    )

    # Use Chat Completions for broad compatibility
    resp = client.chat.completions.create(
        model=model_name,
        messages=[
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": user_content},
        ],
        temperature=0
    )
    text = resp.choices[0].message.content.strip()
    return text

def run_agent(query: str, csv_path: str, dataset_description: str):
    """
    Modified to use yield for progressive updates and immediate feedback
    """
    # Immediate feedback - show processing has started
    processing_html = """
    <div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>
        <div style='font-size: 16px; margin-bottom: 5px;'>πŸ”„ Analysis in Progress...</div>
        <div style='font-size: 14px; color: #666;'>This may take 1-2 minutes depending on dataset size</div>
    </div>
    """
    
    yield (
        processing_html,  # method_out
        processing_html,  # effects_out  
        processing_html,  # explanation_out
        {"status": "Processing started..."}  # raw_results
    )

    # Input validation
    if not os.getenv("OPENAI_API_KEY"):
        error_html = "<div style='padding: 10px; border: 1px solid #dc3545; border-radius: 5px; color: #dc3545; background-color: #333333;'>⚠️ Set a Space Secret named OPENAI_API_KEY</div>"
        yield (error_html, "", "", {})
        return
        
    if not csv_path:
        error_html = "<div style='padding: 10px; border: 1px solid #ffc107; border-radius: 5px; color: #856404; background-color: #333333;'>Please upload a CSV dataset.</div>"
        yield (error_html, "", "", {})
        return

    try:
        # Update status to show causal analysis is running
        analysis_html = """
        <div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>
            <div style='font-size: 16px; margin-bottom: 5px;'>πŸ“Š Running Causal Analysis...</div>
            <div style='font-size: 14px; color: #666;'>Analyzing dataset and selecting optimal method</div>
        </div>
        """
        
        yield (
            analysis_html,
            analysis_html, 
            analysis_html,
            {"status": "Running causal analysis..."}
        )
        
        result = run_causal_analysis(
            query=(query or "What is the effect of treatment T on outcome Y controlling for X?").strip(),
            dataset_path=csv_path,
            dataset_description=(dataset_description or "").strip(),
        )
        
        # Update to show LLM summarization step
        llm_html = """
        <div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>
            <div style='font-size: 16px; margin-bottom: 5px;'>πŸ€– Generating Summary...</div>
            <div style='font-size: 14px; color: #666;'>Creating human-readable interpretation</div>
        </div>
        """
        
        yield (
            llm_html,
            llm_html,
            llm_html,
            {"status": "Generating explanation...", "raw_analysis": result if isinstance(result, dict) else {}}
        )
        
    except Exception as e:
        error_html = f"<div style='padding: 10px; border: 1px solid #dc3545; border-radius: 5px; color: #dc3545; background-color: #333333;'>❌ Error: {e}</div>"
        yield (error_html, "", "", {})
        return

    try:
        payload = _extract_minimal_payload(result if isinstance(result, dict) else {})
        method = payload.get("method_used", "N/A")
        
        # Format method output with simple styling
        method_html = f"""
        <div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>
            <h3 style='margin: 0 0 10px 0; font-size: 18px;'>Selected Method</h3>
            <p style='margin: 0; font-size: 16px;'>{method}</p>
        </div>
        """

        # Format effects with simple styling
        effect_estimate = payload.get("estimates", {}).get("effect_estimate", {})
        if effect_estimate:
            effects_html = "<div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>"
            effects_html += "<h3 style='margin: 0 0 10px 0; font-size: 18px;'>Effect Estimates</h3>"
            # for k, v in effect_estimate.items():
            #     try:
            #         value = f"{float(v):+.4f}"
            #         effects_html += f"<div style='margin: 8px 0; padding: 8px; border: 1px solid #eee; border-radius: 4px; background-color: #ffffff;'><strong>{k}:</strong> <span style='font-size: 16px;'>{value}</span></div>"
            #     except:
            effects_html += f"<div style='margin: 8px 0; padding: 8px; border: 1px solid #eee; border-radius: 4px; background-color: #333333;'>{effect_estimate}</div>"
            effects_html += "</div>"
        else:
            effects_html = "<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; color: #666; font-style: italic; background-color: #333333;'>No effect estimates found</div>"

        # Generate explanation and format it
        try:
            explanation = _summarize_with_llm(payload)
            explanation_html = f"""
            <div style='padding: 15px; border: 1px solid #ddd; border-radius: 8px; margin: 5px 0; background-color: #333333;'>
                <h3 style='margin: 0 0 15px 0; font-size: 18px;'>Detailed Explanation</h3>
                <div style='line-height: 1.6; white-space: pre-wrap;'>{explanation}</div>
            </div>
            """
        except Exception as e:
            explanation_html = f"<div style='padding: 10px; border: 1px solid #ffc107; border-radius: 5px; color: #856404; background-color: #333333;'>⚠️ LLM summary failed: {e}</div>"

    except Exception as e:
        error_html = f"<div style='padding: 10px; border: 1px solid #dc3545; border-radius: 5px; color: #dc3545; background-color: #333333;'>❌ Failed to parse results: {e}</div>"
        yield (error_html, "", "", {})
        return

    # Final result
    yield (method_html, effects_html, explanation_html, result if isinstance(result, dict) else {})

with gr.Blocks() as demo:
    gr.Markdown("# Causal Agent")
    gr.Markdown("Upload your dataset and ask causal questions in natural language. The system will automatically select the appropriate causal inference method and provide clear explanations.")

    with gr.Row():
        query = gr.Textbox(
            label="Your causal question (natural language)",
            placeholder="e.g., What is the effect of attending the program (T) on income (Y), controlling for education and age?",
            lines=2,
        )
    
    with gr.Row():
        csv_file = gr.File(
            label="Dataset (CSV)",
            file_types=[".csv"],
            type="filepath"
        )
    
    dataset_description = gr.Textbox(
        label="Dataset description (optional)",
        placeholder="Brief schema, how it was collected, time period, units, treatment/outcome variables, etc.",
        lines=4,
    )

    run_btn = gr.Button("Run analysis", variant="primary")

    with gr.Row():
        with gr.Column(scale=1):
            method_out = gr.HTML(label="Selected Method")
        with gr.Column(scale=1):
            effects_out = gr.HTML(label="Effect Estimates")

    with gr.Row():
        explanation_out = gr.HTML(label="Detailed Explanation")

    # Add the collapsible raw results section
    with gr.Accordion("Raw Results (Advanced)", open=False):
        raw_results = gr.JSON(label="Complete Analysis Output", show_label=False)

    run_btn.click(
        fn=run_agent,
        inputs=[query, csv_file, dataset_description],
        outputs=[method_out, effects_out, explanation_out, raw_results],
        show_progress=True
    )

    gr.Markdown(
        """
        **Tips:**
        - Be specific about your treatment, outcome, and control variables
        - Include relevant context in the dataset description
        - The analysis may take 1-2 minutes for complex datasets
        """
    )

if __name__ == "__main__":
    demo.queue().launch()