import sys import fire import torch # from peft import PeftModel import transformers import gradio as gr assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass def main( load_8bit: bool = False, base_model: str = "/path/to/llama-7B/hf/ft/checkpoint-300", # lora_weights: str = "tloen/alpaca-lora-7b", ): assert base_model, ( "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'" ) tokenizer = LlamaTokenizer.from_pretrained(base_model) if device == "cuda": model = LlamaForCausalLM.from_pretrained( base_model, load_in_8bit=load_8bit, torch_dtype=torch.float16, device_map="auto", ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( base_model, device_map={"": device}, torch_dtype=torch.float16, ) # unwind broken decapoda-research config model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 if not load_8bit: model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.6, top_p=0.9, top_k=40, num_beams=4, max_new_tokens=512, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas." ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider( minimum=0, maximum=100, step=1, value=40, label="Top k" ), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="Llama-X", description="Improve LLaMA model to follow instructions.", ).launch(share=True) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: """ if __name__ == "__main__": fire.Fire(main)