# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import logging import random from dataclasses import dataclass, field from typing import Optional, Dict, Sequence import torch import torch.distributed import transformers from torch.utils.data import Dataset from transformers import Trainer from datasets import load_dataset import utils IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "<|endoftext|>" DEFAULT_BOS_TOKEN = "<|endoftext|>" DEFAULT_UNK_TOKEN = "<|endoftext|>" PROMPT_DICT = { "prompt_input": ( "Below is an instruction that describes a task, paired with an input that provides further context. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" ), "prompt_no_input": ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ), } @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="bigcode/starcoder") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=512, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, ) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def preprocess( sources: Sequence[str], targets: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: """Preprocess the data by tokenizing.""" examples = [s + t for s, t in zip(sources, targets)] examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)] input_ids = examples_tokenized["input_ids"] labels = copy.deepcopy(input_ids) for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]): label[:source_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=labels) @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = [torch.tensor(x) for x in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id ) labels = [torch.tensor(x) for x in labels] labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) return dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) def train_tokenize_function(examples, tokenizer): prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"] if 'input' in examples: sources = [ prompt_input.format_map(dict(instruction=instruction, input=input)) if input != "" \ else prompt_no_input.format_map(dict(instruction=instruction)) \ for instruction, input in zip(examples['instruction'], examples['input']) ] else: sources = [ prompt_no_input.format_map(dict(instruction=instruction)) \ for instruction in examples['instruction'] ] targets = [f"{output}{tokenizer.eos_token}" for output in examples['output']] data_dict = preprocess(sources, targets, tokenizer) return data_dict def train(): parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model = transformers.AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=True, ) if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), tokenizer=tokenizer, model=model, ) if "starcoder" in model_args.model_name_or_path: tokenizer.add_special_tokens( { "eos_token": DEFAULT_EOS_TOKEN, "bos_token": DEFAULT_BOS_TOKEN, "unk_token": DEFAULT_UNK_TOKEN, "pad_token": DEFAULT_PAD_TOKEN, } ) raw_train_datasets = load_dataset('json', data_files=data_args.data_path, split="train", cache_dir=training_args.cache_dir) if training_args.local_rank > 0: torch.distributed.barrier() train_dataset = raw_train_datasets.map( train_tokenize_function, batched=True, batch_size=3000, num_proc=32, remove_columns=raw_train_datasets.column_names, load_from_cache_file=True, # not args.overwrite_cache desc="Running tokenizer on train dataset", fn_kwargs={"tokenizer": tokenizer} ) if training_args.local_rank == 0: torch.distributed.barrier() if training_args.local_rank == 0: print(len(train_dataset)) for index in random.sample(range(len(train_dataset)), 3): print(f"Sample {index} of the training set: {train_dataset[index]}.") data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) #Tell Trainer not to attempt DataParallel model.is_parallelizable = True model.model_parallel = True trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) model.config.use_cache = False trainer.train() trainer.save_state() safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) if __name__ == "__main__": train()