import argparse import pprint import sys import os import re from tqdm import tqdm import torch from transformers import LlamaTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig from human_eval.data import write_jsonl, read_problems, stream_jsonl from vllm import LLM from vllm import SamplingParams if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass def generate_prompt(input): INSTRUCTION = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Create a Python script for this problem: {input} ### Response:""" return INSTRUCTION def main(): parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default='bigcode/starcoder', help="") parser.add_argument('--lora', type=str, default='bigcode/starcoder', help="") parser.add_argument('--output_path', type=str, help="") parser.add_argument('--start_index', type=int, default=0, help="") parser.add_argument('--end_index', type=int, default=164, help="") parser.add_argument('--temperature', type=float, default=0.8, help="") parser.add_argument('--N', type=int, default=200, help="") parser.add_argument('--max_len', type=int, default=512, help="") parser.add_argument('--num_gpus', type=int, default=4, help="") parser.add_argument('--decoding_style', type=str, default='sampling', help="") parser.add_argument('--num_seqs_per_iter', type=int, default=50, help='') parser.add_argument('--overwrite', action='store_true', help='') args = parser.parse_args() argsdict = vars(args) print(pprint.pformat(argsdict)) problems = read_problems() task_ids = sorted(problems.keys())[args.start_index: args.end_index] prompts = [problems[task_id]['prompt'] for task_id in task_ids] num_samples = len(prompts) print("Number of samples: {}".format(num_samples)) llm = LLM(base_model, tensor_parallel_size=args.num_gpus) sampling_params = SamplingParams(temperature=args.temperature, top_p=1, max_tokens=args.max_len) print(f"Loaded {args.model}.") for i in tqdm(range(num_samples), ncols=0, total=num_samples): output_file = args.output_path + '/{}.jsonl'.format(args.start_index + i) if os.path.exists(output_file) and not args.overwrite: print(f'Skip {output_file} as it already exists') continue prompt = prompts[i].replace(' ', '\t') prompt_batch = [generate_prompt(prompt)] ids_batch = [task_ids[i]] completion_seqs = [] if args.decoding_style == 'sampling': loops = int(args.N / args.num_seqs_per_iter) else: loops = 1 for _ in tqdm(range(loops), total=loops, leave=False, ncols=0): with torch.no_grad(): completions = llm.generate(prompt_batch, sampling_params) gen_seqs = [completions[0].outputs[0].text] if gen_seqs is not None: assert len(ids_batch) == 1 task_id = ids_batch[0] for seq_idx, gen_seq in enumerate(gen_seqs): completion_seq = gen_seq.split("### Response:")[-1] completion_seq = completion_seq.replace('\t', ' ') all_code = gen_seq.replace('\t', ' ') completion_seqs.append( {'task_id': task_id, 'completion': completion_seq, 'all_code': all_code, } ) print("Saving results to {}".format(output_file)) write_jsonl(output_file, completion_seqs) if __name__ == '__main__': main()