Spaces:
Running
Running
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import copy | |
import logging | |
from dataclasses import dataclass, field | |
from typing import Optional, Dict, Sequence | |
import torch | |
import transformers | |
from torch.utils.data import Dataset | |
from transformers import Trainer | |
from transformers.trainer_pt_utils import LabelSmoother | |
from conversation import SeparatorStyle, Conversation | |
# from fastchat.model.model_adapter import get_conversation_template | |
import utils | |
IGNORE_TOKEN_ID = LabelSmoother.ignore_index | |
# IGNORE_INDEX = -100 | |
DEFAULT_PAD_TOKEN = "[PAD]" | |
DEFAULT_EOS_TOKEN = "</s>" | |
DEFAULT_BOS_TOKEN = "</s>" | |
DEFAULT_UNK_TOKEN = "</s>" | |
# PROMPT_DICT = { | |
# "prompt_input": ( | |
# "{instruction}\n\n### Response:" | |
# ), | |
# "prompt_no_input": ( | |
# "{instruction}\n\n### Response:" | |
# ), | |
# } | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
class DataArguments: | |
data_path: str = field(default=None, metadata={"help": "Path to the training data."}) | |
complex_data: Optional[str] = field(default=None) | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
model_max_length: int = field( | |
default=2048, | |
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, | |
) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
for text in strings | |
] | |
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] | |
input_ids_lens = labels_lens = [ | |
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list | |
] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
local_rank = None | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
"""Preprocess the data by tokenizing.""" | |
conv = Conversation( | |
name="vicuna_v1.1", | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=["USER", "ASSISTANT"], | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.ADD_COLON_TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
#print("$$"+conv.get_prompt().strip()+"$$") | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_TOKEN_ID | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID | |
cur_len += round_len | |
target[cur_len:] = IGNORE_TOKEN_ID | |
if False: | |
z = target.clone() | |
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z) | |
rank0_print(tokenizer.decode(z)) | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_TOKEN_ID | |
rank0_print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
attention_mask=input_ids.ne(tokenizer.pad_token_id), | |
) | |
class SupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer): | |
super(SupervisedDataset, self).__init__() | |
logging.warning("Loading data...") | |
list_data_dict = utils.jload(data_path) | |
sources = [example["conversations"] for example in list_data_dict] | |
data_dict = preprocess(sources, tokenizer) | |
self.input_ids = data_dict["input_ids"] | |
self.labels = data_dict["labels"] | |
self.attention_mask = data_dict["attention_mask"] | |
def __len__(self): | |
return len(self.input_ids) | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
return dict( | |
input_ids=self.input_ids[i], | |
labels=self.labels[i], | |
attention_mask=self.attention_mask[i] | |
) | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path) | |
# data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, eval_dataset=None)#), data_collator=data_collator) | |
def train(): | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
if "llama" in model_args.model_name_or_path: | |
tokenizer.add_special_tokens( | |
{ | |
"eos_token": DEFAULT_EOS_TOKEN, | |
"bos_token": DEFAULT_BOS_TOKEN, | |
"unk_token": DEFAULT_UNK_TOKEN, | |
} | |
) | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
#Tell Trainer not to attempt DataParallel | |
model.is_parallelizable = True | |
model.model_parallel = True | |
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) | |
model.config.use_cache = False | |
trainer.train() | |
trainer.save_state() | |
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) | |
if __name__ == "__main__": | |
train() | |