Spaces:
Running
Running
File size: 5,356 Bytes
df96e38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import argparse
import pprint
import sys
import os
import re
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from human_eval.data import write_jsonl, read_problems, stream_jsonl
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
def generate_prompt(input):
INSTRUCTION = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Create a Python script for this problem:
{input}
### Response:"""
return INSTRUCTION
def get_model(
load_8bit: bool = False,
base_model: str = "bigcode/starcoder",
):
assert base_model, (
"Please specify a --base_model, e.g. --base_model='bigcode/starcoder'"
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model.config.pad_token_id = tokenizer.pad_token_id
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
return tokenizer, model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='bigcode/starcoder', help="")
parser.add_argument('--output_path', type=str, help="")
parser.add_argument('--start_index', type=int, default=0, help="")
parser.add_argument('--end_index', type=int, default=164, help="")
parser.add_argument('--temperature', type=float, default=0.8, help="")
parser.add_argument('--N', type=int, default=200, help="")
parser.add_argument('--max_len', type=int, default=512, help="")
parser.add_argument('--decoding_style', type=str, default='sampling', help="")
parser.add_argument('--num_seqs_per_iter', type=int, default=50, help='')
parser.add_argument('--greedy_decode', action='store_true', help='')
parser.add_argument('--overwrite', action='store_true', help='')
args = parser.parse_args()
argsdict = vars(args)
print(pprint.pformat(argsdict))
problems = read_problems()
task_ids = sorted(problems.keys())[args.start_index: args.end_index]
prompts = [problems[task_id]['prompt'] for task_id in task_ids]
num_samples = len(prompts)
print("Number of samples: {}".format(num_samples))
tokenizer, model = get_model(base_model=args.model)
generation_config = GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
do_sample=False if args.greedy_decode else True,
temperature=args.temperature,
max_length=args.max_len,
num_return_sequences=args.num_seqs_per_iter,
eos_token_id=tokenizer.eos_token_id,
top_p=0.95
)
print(f"Loaded {args.model}.")
for i in tqdm(range(num_samples), ncols=0, total=num_samples):
output_file = args.output_path + '/{}.jsonl'.format(args.start_index + i)
if os.path.exists(output_file) and not args.overwrite:
print(f'Skip {output_file} as it already exists')
continue
prompt = prompts[i].replace(' ', '\t')
prompt_batch = [generate_prompt(prompt)]
ids_batch = [task_ids[i]]
completion_seqs = []
encoding = tokenizer(prompt_batch, return_tensors="pt", truncation=True, max_length=args.max_len).to(device)
if args.decoding_style == 'sampling':
loops = int(args.N / args.num_seqs_per_iter)
else:
loops = 1
for _ in tqdm(range(loops), total=loops, leave=False, ncols=0):
with torch.no_grad():
gen_tokens = model.generate(
**encoding,
generation_config=generation_config
)
if gen_tokens is not None:
gen_seqs = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
else:
gen_seqs = None
if gen_seqs is not None:
assert len(ids_batch) == 1
task_id = ids_batch[0]
for seq_idx, gen_seq in enumerate(gen_seqs):
completion_seq = gen_seq.split("### Response:")[1]
completion_seq = completion_seq.replace('\t', ' ')
all_code = gen_seq.replace('\t', ' ')
completion_seqs.append(
{'task_id': task_id,
'completion': completion_seq,
'all_code': all_code,
}
)
print("Saving results to {}".format(output_file))
write_jsonl(output_file, completion_seqs)
if __name__ == '__main__':
main() |