Update utils/models.py
Browse files- utils/models.py +28 -29
utils/models.py
CHANGED
@@ -1,58 +1,57 @@
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
-
from tsfm_public.toolkit.get_model import get_model
|
4 |
from transformers import pipeline
|
|
|
5 |
|
6 |
-
def predict_umkm(data, prediction_length=7,
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
try:
|
10 |
-
# ===== 1.
|
11 |
-
|
12 |
-
|
13 |
-
context_length=min(512, len(data)),
|
14 |
-
prediction_length=prediction_length,
|
15 |
-
device=device
|
16 |
-
)
|
17 |
-
|
18 |
-
# Format input
|
19 |
-
inputs = torch.tensor(data['demand'].values, dtype=torch.float32)
|
20 |
-
inputs = inputs.unsqueeze(0).to(device) # Shape: [1, seq_len]
|
21 |
|
22 |
-
# Prediksi
|
23 |
-
with torch.no_grad():
|
24 |
-
preds = model.generate(inputs).cpu().numpy().flatten()
|
25 |
-
|
26 |
-
# ===== 2. Chronos-T5 Decision =====
|
27 |
chronos = pipeline(
|
28 |
"text-generation",
|
29 |
model="amazon/chronos-t5-small",
|
30 |
device=device
|
31 |
)
|
32 |
|
|
|
33 |
prompt = f"""
|
34 |
[INSTRUCTION]
|
35 |
-
Berikan rekomendasi untuk
|
36 |
-
-
|
37 |
- Stok saat ini: {data['supply'].iloc[-1]}
|
38 |
-
-
|
39 |
|
40 |
[FORMAT]
|
41 |
-
1 kalimat dalam Bahasa Indonesia dengan angka
|
42 |
-
Estimasi ROI dalam
|
43 |
[/FORMAT]
|
44 |
"""
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Ekstrak teks rekomendasi
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
return {
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"roi":
|
55 |
-
"
|
|
|
56 |
}
|
57 |
|
58 |
except Exception as e:
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
|
|
3 |
from transformers import pipeline
|
4 |
+
from sklearn.preprocessing import MinMaxScaler
|
5 |
|
6 |
+
def predict_umkm(data, prediction_length=7, safety_stock=10):
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
try:
|
10 |
+
# ===== 1. Persiapan Data =====
|
11 |
+
scaler = MinMaxScaler()
|
12 |
+
scaled_demand = scaler.fit_transform(data[['demand']]).flatten().tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# ===== 2. Prediksi dengan Chronos-T5 =====
|
|
|
|
|
|
|
|
|
15 |
chronos = pipeline(
|
16 |
"text-generation",
|
17 |
model="amazon/chronos-t5-small",
|
18 |
device=device
|
19 |
)
|
20 |
|
21 |
+
# Format prompt khusus time series
|
22 |
prompt = f"""
|
23 |
[INSTRUCTION]
|
24 |
+
Berikan rekomendasi manajemen inventori untuk {prediction_length} hari ke depan:
|
25 |
+
- Data historis demand: {scaled_demand[-100:]} # Ambil 100 data terakhir
|
26 |
- Stok saat ini: {data['supply'].iloc[-1]}
|
27 |
+
- Safety stock: {safety_stock}
|
28 |
|
29 |
[FORMAT]
|
30 |
+
1 kalimat dalam Bahasa Indonesia dengan angka konkret
|
31 |
+
Estimasi ROI dalam persentase
|
32 |
[/FORMAT]
|
33 |
"""
|
34 |
|
35 |
+
# Generate rekomendasi
|
36 |
+
response = chronos(
|
37 |
+
prompt,
|
38 |
+
max_new_tokens=100,
|
39 |
+
temperature=0.7
|
40 |
+
)[0]['generated_text']
|
41 |
|
42 |
# Ekstrak teks rekomendasi
|
43 |
+
rekomendasi = response.split("[/FORMAT]")[-1].strip()
|
44 |
+
|
45 |
+
# ===== 3. Simulasi ROI ===== (Contoh Sederhana)
|
46 |
+
avg_demand = np.mean(data['demand'][-30:])
|
47 |
+
roi = round((avg_demand * 0.2) / (data['supply'].iloc[-1] + safety_stock) * 100, 1)
|
48 |
|
49 |
return {
|
50 |
+
"rekomendasi": rekomendasi,
|
51 |
+
"prediksi": [avg_demand] * prediction_length, # Contoh prediksi
|
52 |
+
"roi": roi,
|
53 |
+
"stok_optimal": int(avg_demand * 1.2) + safety_stock,
|
54 |
+
"anomali": len(data) - len(clean_data(data))
|
55 |
}
|
56 |
|
57 |
except Exception as e:
|