Spaces:
Running
Running
nam pham
commited on
Commit
·
090dddd
1
Parent(s):
1422152
feat: create app
Browse files- .python-version +1 -0
- app.py +651 -0
- data/annotated_data.json +0 -0
- pyproject.toml +12 -0
- requirements.txt +4 -0
- uv.lock +0 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
app.py
ADDED
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
from typing import List, Dict, Union, Tuple
|
9 |
+
from gliner import GLiNER
|
10 |
+
from datasets import load_dataset
|
11 |
+
|
12 |
+
# Available models for annotation
|
13 |
+
AVAILABLE_MODELS = [
|
14 |
+
"BookingCare/gliner-multi-healthcare",
|
15 |
+
"knowledgator/gliner-multitask-large-v0.5",
|
16 |
+
"knowledgator/gliner-multitask-base-v0.5"
|
17 |
+
]
|
18 |
+
|
19 |
+
# Dataset Viewer Classes and Functions
|
20 |
+
class DynamicDataset:
|
21 |
+
def __init__(
|
22 |
+
self, data: List[Dict[str, Union[List[Union[int, str]], bool]]]
|
23 |
+
) -> None:
|
24 |
+
self.data = data
|
25 |
+
self.data_len = len(self.data)
|
26 |
+
self.current = -1
|
27 |
+
for example in self.data:
|
28 |
+
if not "validated" in example.keys():
|
29 |
+
example["validated"] = False
|
30 |
+
|
31 |
+
def next_example(self):
|
32 |
+
self.current += 1
|
33 |
+
if self.current > self.data_len-1:
|
34 |
+
self.current = self.data_len -1
|
35 |
+
elif self.current < 0:
|
36 |
+
self.current = 0
|
37 |
+
|
38 |
+
def previous_example(self):
|
39 |
+
self.current -= 1
|
40 |
+
if self.current > self.data_len-1:
|
41 |
+
self.current = self.data_len -1
|
42 |
+
elif self.current < 0:
|
43 |
+
self.current = 0
|
44 |
+
|
45 |
+
def example_by_id(self, id):
|
46 |
+
self.current = id
|
47 |
+
if self.current > self.data_len-1:
|
48 |
+
self.current = self.data_len -1
|
49 |
+
elif self.current < 0:
|
50 |
+
self.current = 0
|
51 |
+
|
52 |
+
def validate(self):
|
53 |
+
self.data[self.current]["validated"] = True
|
54 |
+
|
55 |
+
def load_current_example(self):
|
56 |
+
return self.data[self.current]
|
57 |
+
|
58 |
+
def tokenize_text(text):
|
59 |
+
"""Tokenize the input text into a list of tokens."""
|
60 |
+
return re.findall(r'\w+(?:[-_]\w+)*|\S', text)
|
61 |
+
|
62 |
+
def join_tokens(tokens):
|
63 |
+
# Joining tokens with space, but handling special characters correctly
|
64 |
+
text = ""
|
65 |
+
for token in tokens:
|
66 |
+
if token in {",", ".", "!", "?", ":", ";", "..."}:
|
67 |
+
text = text.rstrip() + token
|
68 |
+
else:
|
69 |
+
text += " " + token
|
70 |
+
return text.strip()
|
71 |
+
|
72 |
+
def prepare_for_highlight(data):
|
73 |
+
tokens = data["tokenized_text"]
|
74 |
+
ner = data["ner"]
|
75 |
+
|
76 |
+
highlighted_text = []
|
77 |
+
current_entity = None
|
78 |
+
entity_tokens = []
|
79 |
+
normal_tokens = []
|
80 |
+
|
81 |
+
for idx, token in enumerate(tokens):
|
82 |
+
# Check if the current token is the start of a new entity
|
83 |
+
if current_entity is None or idx > current_entity[1]:
|
84 |
+
if entity_tokens:
|
85 |
+
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
|
86 |
+
entity_tokens = []
|
87 |
+
current_entity = next((entity for entity in ner if entity[0] == idx), None)
|
88 |
+
|
89 |
+
# If current token is part of an entity
|
90 |
+
if current_entity and current_entity[0] <= idx <= current_entity[1]:
|
91 |
+
if normal_tokens:
|
92 |
+
highlighted_text.append((" ".join(normal_tokens), None))
|
93 |
+
normal_tokens = []
|
94 |
+
entity_tokens.append(token + " ")
|
95 |
+
else:
|
96 |
+
if entity_tokens:
|
97 |
+
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
|
98 |
+
entity_tokens = []
|
99 |
+
normal_tokens.append(token + " ")
|
100 |
+
|
101 |
+
# Append any remaining tokens
|
102 |
+
if entity_tokens:
|
103 |
+
highlighted_text.append((" ".join(entity_tokens), current_entity[2]))
|
104 |
+
if normal_tokens:
|
105 |
+
highlighted_text.append((" ".join(normal_tokens), None))
|
106 |
+
# Clean up spaces before punctuation
|
107 |
+
cleaned_highlighted_text = []
|
108 |
+
for text, label in highlighted_text:
|
109 |
+
cleaned_text = re.sub(r'\s(?=[,\.!?…:;])', '', text)
|
110 |
+
cleaned_highlighted_text.append((cleaned_text, label))
|
111 |
+
|
112 |
+
return cleaned_highlighted_text
|
113 |
+
|
114 |
+
def extract_tokens_and_labels(data: List[Dict[str, Union[str, None]]]) -> Dict[str, Union[List[str], List[Tuple[int, int, str]]]]:
|
115 |
+
tokens = []
|
116 |
+
ner = []
|
117 |
+
|
118 |
+
token_start_idx = 0
|
119 |
+
|
120 |
+
for entry in data:
|
121 |
+
char = entry['token']
|
122 |
+
label = entry['class_or_confidence']
|
123 |
+
|
124 |
+
# Tokenize the current text chunk
|
125 |
+
token_list = tokenize_text(char)
|
126 |
+
|
127 |
+
# Append tokens to the main tokens list
|
128 |
+
tokens.extend(token_list)
|
129 |
+
|
130 |
+
if label:
|
131 |
+
token_end_idx = token_start_idx + len(token_list) - 1
|
132 |
+
ner.append((token_start_idx, token_end_idx, label))
|
133 |
+
|
134 |
+
token_start_idx += len(token_list)
|
135 |
+
|
136 |
+
return tokens, ner
|
137 |
+
|
138 |
+
# Global variables for dataset viewer
|
139 |
+
dynamic_dataset = None
|
140 |
+
|
141 |
+
def update_example(data):
|
142 |
+
global dynamic_dataset
|
143 |
+
tokens, ner = extract_tokens_and_labels(data)
|
144 |
+
dynamic_dataset.data[dynamic_dataset.current]["tokenized_text"] = tokens
|
145 |
+
dynamic_dataset.data[dynamic_dataset.current]["ner"] = ner
|
146 |
+
return prepare_for_highlight(dynamic_dataset.load_current_example())
|
147 |
+
|
148 |
+
def validate_example():
|
149 |
+
global dynamic_dataset
|
150 |
+
dynamic_dataset.data[dynamic_dataset.current]["validated"] = True
|
151 |
+
return [("The example was validated!", None)]
|
152 |
+
|
153 |
+
def next_example():
|
154 |
+
global dynamic_dataset
|
155 |
+
dynamic_dataset.next_example()
|
156 |
+
return prepare_for_highlight(dynamic_dataset.load_current_example()), dynamic_dataset.current
|
157 |
+
|
158 |
+
def previous_example():
|
159 |
+
global dynamic_dataset
|
160 |
+
dynamic_dataset.previous_example()
|
161 |
+
return prepare_for_highlight(dynamic_dataset.load_current_example()), dynamic_dataset.current
|
162 |
+
|
163 |
+
def save_dataset(inp):
|
164 |
+
global dynamic_dataset
|
165 |
+
with open("data/annotated_data.json", "wt") as file:
|
166 |
+
json.dump(dynamic_dataset.data, file)
|
167 |
+
return [("The validated dataset was saved as data/annotated_data.json", None)]
|
168 |
+
|
169 |
+
def load_dataset():
|
170 |
+
global dynamic_dataset
|
171 |
+
try:
|
172 |
+
with open("data/annotated_data.json", 'rt') as dataset:
|
173 |
+
ANNOTATED_DATA = json.load(dataset)
|
174 |
+
dynamic_dataset = DynamicDataset(ANNOTATED_DATA)
|
175 |
+
max_value = len(dynamic_dataset.data) - 1 if dynamic_dataset.data else 0
|
176 |
+
return prepare_for_highlight(dynamic_dataset.load_current_example()), 0, max_value
|
177 |
+
except Exception as e:
|
178 |
+
return [("Error loading dataset: " + str(e), None)], 0, 0
|
179 |
+
|
180 |
+
# Original annotation functions
|
181 |
+
def transform_data(data):
|
182 |
+
tokens = tokenize_text(data['text'])
|
183 |
+
spans = []
|
184 |
+
|
185 |
+
for entity in data['entities']:
|
186 |
+
entity_tokens = tokenize_text(entity['word'])
|
187 |
+
entity_length = len(entity_tokens)
|
188 |
+
|
189 |
+
# Find the start and end indices of each entity in the tokenized text
|
190 |
+
for i in range(len(tokens) - entity_length + 1):
|
191 |
+
if tokens[i:i + entity_length] == entity_tokens:
|
192 |
+
spans.append([i, i + entity_length - 1, entity['entity']])
|
193 |
+
break
|
194 |
+
|
195 |
+
return {"tokenized_text": tokens, "ner": spans, "validated": False}
|
196 |
+
|
197 |
+
def merge_entities(entities):
|
198 |
+
if not entities:
|
199 |
+
return []
|
200 |
+
merged = []
|
201 |
+
current = entities[0]
|
202 |
+
for next_entity in entities[1:]:
|
203 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
204 |
+
current['word'] += ' ' + next_entity['word']
|
205 |
+
current['end'] = next_entity['end']
|
206 |
+
else:
|
207 |
+
merged.append(current)
|
208 |
+
current = next_entity
|
209 |
+
merged.append(current)
|
210 |
+
return merged
|
211 |
+
|
212 |
+
def annotate_text(model, text, labels: List[str], threshold: float, nested_ner: bool) -> Dict:
|
213 |
+
labels = [label.strip() for label in labels]
|
214 |
+
r = {
|
215 |
+
"text": text,
|
216 |
+
"entities": [
|
217 |
+
{
|
218 |
+
"entity": entity["label"],
|
219 |
+
"word": entity["text"],
|
220 |
+
"start": entity["start"],
|
221 |
+
"end": entity["end"],
|
222 |
+
"score": 0,
|
223 |
+
}
|
224 |
+
for entity in model.predict_entities(
|
225 |
+
text, labels, flat_ner=not nested_ner, threshold=threshold
|
226 |
+
)
|
227 |
+
],
|
228 |
+
}
|
229 |
+
r["entities"] = merge_entities(r["entities"])
|
230 |
+
return transform_data(r)
|
231 |
+
|
232 |
+
class AutoAnnotator:
|
233 |
+
def __init__(
|
234 |
+
self, model: str = "knowledgator/gliner-multitask-large-v0.5",
|
235 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
236 |
+
) -> None:
|
237 |
+
|
238 |
+
self.model = GLiNER.from_pretrained(model).to(device)
|
239 |
+
self.annotated_data = []
|
240 |
+
self.stat = {
|
241 |
+
"total": None,
|
242 |
+
"current": -1
|
243 |
+
}
|
244 |
+
|
245 |
+
def auto_annotate(
|
246 |
+
self, data: List[str], labels: List[str],
|
247 |
+
prompt: Union[str, List[str]] = None, threshold: float = 0.5, nested_ner: bool = False
|
248 |
+
) -> List[Dict]:
|
249 |
+
self.stat["total"] = len(data)
|
250 |
+
self.stat["current"] = -1 # Reset current progress
|
251 |
+
for text in data:
|
252 |
+
self.stat["current"] += 1
|
253 |
+
if isinstance(prompt, list):
|
254 |
+
prompt_text = random.choice(prompt)
|
255 |
+
else:
|
256 |
+
prompt_text = prompt
|
257 |
+
text = f"{prompt_text}\n{text}" if prompt_text else text
|
258 |
+
|
259 |
+
annotation = annotate_text(self.model, text, labels, threshold, nested_ner)
|
260 |
+
|
261 |
+
if not annotation["ner"]: # If no entities identified
|
262 |
+
annotation = {"tokenized_text": tokenize_text(text), "ner": [], "validated": False}
|
263 |
+
|
264 |
+
self.annotated_data.append(annotation)
|
265 |
+
return self.annotated_data
|
266 |
+
|
267 |
+
# Global variables
|
268 |
+
annotator = None
|
269 |
+
sentences = []
|
270 |
+
|
271 |
+
def process_uploaded_file(file_obj):
|
272 |
+
if file_obj is None:
|
273 |
+
return "Please upload a file first!"
|
274 |
+
|
275 |
+
try:
|
276 |
+
# Read the uploaded file
|
277 |
+
with open(file_obj.name, 'r', encoding='utf-8') as f:
|
278 |
+
global sentences
|
279 |
+
sentences = [line.strip() for line in f if line.strip()]
|
280 |
+
return f"Successfully loaded {len(sentences)} sentences from file!"
|
281 |
+
except Exception as e:
|
282 |
+
return f"Error reading file: {str(e)}"
|
283 |
+
|
284 |
+
def annotate(model, labels, threshold, prompt):
|
285 |
+
global annotator
|
286 |
+
try:
|
287 |
+
if not sentences:
|
288 |
+
return "Please upload a file with text first!"
|
289 |
+
|
290 |
+
labels = [label.strip() for label in labels.split(",")]
|
291 |
+
annotator = AutoAnnotator(model)
|
292 |
+
annotated_data = annotator.auto_annotate(sentences, labels, prompt, threshold)
|
293 |
+
|
294 |
+
# Save annotated data
|
295 |
+
os.makedirs("data", exist_ok=True)
|
296 |
+
with open("data/annotated_data.json", "wt") as file:
|
297 |
+
json.dump(annotated_data, file, ensure_ascii=False)
|
298 |
+
|
299 |
+
# Upload to Hugging Face Hub
|
300 |
+
api = HfApi()
|
301 |
+
api.upload_file(
|
302 |
+
path_or_fileobj="data/annotated_data.json",
|
303 |
+
path_in_repo="annotated_data.json",
|
304 |
+
repo_id="YOUR_USERNAME/YOUR_REPO_NAME", # Replace with your repo
|
305 |
+
repo_type="dataset"
|
306 |
+
)
|
307 |
+
|
308 |
+
return "Successfully annotated and saved to Hugging Face Hub!"
|
309 |
+
except Exception as e:
|
310 |
+
return f"Error during annotation: {str(e)}"
|
311 |
+
|
312 |
+
def convert_hf_dataset_to_ner_format(dataset):
|
313 |
+
"""Convert Hugging Face dataset to NER format"""
|
314 |
+
converted_data = []
|
315 |
+
for item in dataset:
|
316 |
+
# Assuming the dataset has 'tokens' and 'ner_tags' fields
|
317 |
+
# Adjust the field names based on your dataset structure
|
318 |
+
if 'tokens' in item and 'ner_tags' in item:
|
319 |
+
ner_spans = []
|
320 |
+
current_span = None
|
321 |
+
|
322 |
+
for i, (token, tag) in enumerate(zip(item['tokens'], item['ner_tags'])):
|
323 |
+
if tag != 'O': # Not Outside
|
324 |
+
if current_span is None:
|
325 |
+
current_span = [i, i, tag]
|
326 |
+
elif tag == current_span[2]:
|
327 |
+
current_span[1] = i
|
328 |
+
else:
|
329 |
+
ner_spans.append(current_span)
|
330 |
+
current_span = [i, i, tag]
|
331 |
+
elif current_span is not None:
|
332 |
+
ner_spans.append(current_span)
|
333 |
+
current_span = None
|
334 |
+
|
335 |
+
if current_span is not None:
|
336 |
+
ner_spans.append(current_span)
|
337 |
+
|
338 |
+
converted_data.append({
|
339 |
+
"tokenized_text": item['tokens'],
|
340 |
+
"ner": ner_spans,
|
341 |
+
"validated": False
|
342 |
+
})
|
343 |
+
|
344 |
+
return converted_data
|
345 |
+
|
346 |
+
def load_from_huggingface(dataset_name: str, split: str = "train"):
|
347 |
+
"""Load dataset from Hugging Face Hub"""
|
348 |
+
try:
|
349 |
+
dataset = load_dataset(dataset_name, split=split)
|
350 |
+
converted_data = convert_hf_dataset_to_ner_format(dataset)
|
351 |
+
|
352 |
+
# Save the converted data
|
353 |
+
os.makedirs("data", exist_ok=True)
|
354 |
+
with open("data/annotated_data.json", "wt") as file:
|
355 |
+
json.dump(converted_data, file, ensure_ascii=False)
|
356 |
+
|
357 |
+
return f"Successfully loaded and converted dataset: {dataset_name}"
|
358 |
+
except Exception as e:
|
359 |
+
return f"Error loading dataset: {str(e)}"
|
360 |
+
|
361 |
+
def load_from_local_file(file_path: str, file_format: str = "json"):
|
362 |
+
"""Load and convert data from local file in various formats"""
|
363 |
+
try:
|
364 |
+
if file_format == "json":
|
365 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
366 |
+
data = json.load(f)
|
367 |
+
if isinstance(data, list):
|
368 |
+
# If data is already in the correct format
|
369 |
+
if all("tokenized_text" in item and "ner" in item for item in data):
|
370 |
+
return data
|
371 |
+
# Convert from other JSON formats
|
372 |
+
converted_data = []
|
373 |
+
for item in data:
|
374 |
+
if "tokens" in item and "ner_tags" in item:
|
375 |
+
ner_spans = []
|
376 |
+
current_span = None
|
377 |
+
for i, (token, tag) in enumerate(zip(item["tokens"], item["ner_tags"])):
|
378 |
+
if tag != "O":
|
379 |
+
if current_span is None:
|
380 |
+
current_span = [i, i, tag]
|
381 |
+
elif tag == current_span[2]:
|
382 |
+
current_span[1] = i
|
383 |
+
else:
|
384 |
+
ner_spans.append(current_span)
|
385 |
+
current_span = [i, i, tag]
|
386 |
+
elif current_span is not None:
|
387 |
+
ner_spans.append(current_span)
|
388 |
+
current_span = None
|
389 |
+
if current_span is not None:
|
390 |
+
ner_spans.append(current_span)
|
391 |
+
converted_data.append({
|
392 |
+
"tokenized_text": item["tokens"],
|
393 |
+
"ner": ner_spans,
|
394 |
+
"validated": False
|
395 |
+
})
|
396 |
+
return converted_data
|
397 |
+
else:
|
398 |
+
raise ValueError("JSON file must contain a list of examples")
|
399 |
+
|
400 |
+
elif file_format == "conll":
|
401 |
+
converted_data = []
|
402 |
+
current_example = {"tokens": [], "ner_tags": []}
|
403 |
+
|
404 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
405 |
+
for line in f:
|
406 |
+
line = line.strip()
|
407 |
+
if line:
|
408 |
+
if line.startswith("#"):
|
409 |
+
continue
|
410 |
+
parts = line.split()
|
411 |
+
if len(parts) >= 2:
|
412 |
+
token, tag = parts[0], parts[-1]
|
413 |
+
current_example["tokens"].append(token)
|
414 |
+
current_example["ner_tags"].append(tag)
|
415 |
+
elif current_example["tokens"]:
|
416 |
+
# Convert current example
|
417 |
+
ner_spans = []
|
418 |
+
current_span = None
|
419 |
+
for i, (token, tag) in enumerate(zip(current_example["tokens"], current_example["ner_tags"])):
|
420 |
+
if tag != "O":
|
421 |
+
if current_span is None:
|
422 |
+
current_span = [i, i, tag]
|
423 |
+
elif tag == current_span[2]:
|
424 |
+
current_span[1] = i
|
425 |
+
else:
|
426 |
+
ner_spans.append(current_span)
|
427 |
+
current_span = [i, i, tag]
|
428 |
+
elif current_span is not None:
|
429 |
+
ner_spans.append(current_span)
|
430 |
+
current_span = None
|
431 |
+
if current_span is not None:
|
432 |
+
ner_spans.append(current_span)
|
433 |
+
|
434 |
+
converted_data.append({
|
435 |
+
"tokenized_text": current_example["tokens"],
|
436 |
+
"ner": ner_spans,
|
437 |
+
"validated": False
|
438 |
+
})
|
439 |
+
current_example = {"tokens": [], "ner_tags": []}
|
440 |
+
|
441 |
+
# Handle last example if exists
|
442 |
+
if current_example["tokens"]:
|
443 |
+
ner_spans = []
|
444 |
+
current_span = None
|
445 |
+
for i, (token, tag) in enumerate(zip(current_example["tokens"], current_example["ner_tags"])):
|
446 |
+
if tag != "O":
|
447 |
+
if current_span is None:
|
448 |
+
current_span = [i, i, tag]
|
449 |
+
elif tag == current_span[2]:
|
450 |
+
current_span[1] = i
|
451 |
+
else:
|
452 |
+
ner_spans.append(current_span)
|
453 |
+
current_span = [i, i, tag]
|
454 |
+
elif current_span is not None:
|
455 |
+
ner_spans.append(current_span)
|
456 |
+
current_span = None
|
457 |
+
if current_span is not None:
|
458 |
+
ner_spans.append(current_span)
|
459 |
+
|
460 |
+
converted_data.append({
|
461 |
+
"tokenized_text": current_example["tokens"],
|
462 |
+
"ner": ner_spans,
|
463 |
+
"validated": False
|
464 |
+
})
|
465 |
+
|
466 |
+
return converted_data
|
467 |
+
|
468 |
+
elif file_format == "txt":
|
469 |
+
# Simple text file with one sentence per line
|
470 |
+
converted_data = []
|
471 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
472 |
+
for line in f:
|
473 |
+
line = line.strip()
|
474 |
+
if line:
|
475 |
+
tokens = tokenize_text(line)
|
476 |
+
converted_data.append({
|
477 |
+
"tokenized_text": tokens,
|
478 |
+
"ner": [],
|
479 |
+
"validated": False
|
480 |
+
})
|
481 |
+
return converted_data
|
482 |
+
|
483 |
+
else:
|
484 |
+
raise ValueError(f"Unsupported file format: {file_format}")
|
485 |
+
|
486 |
+
except Exception as e:
|
487 |
+
raise Exception(f"Error loading file: {str(e)}")
|
488 |
+
|
489 |
+
def process_local_file(file_obj, file_format):
|
490 |
+
"""Process uploaded local file"""
|
491 |
+
if file_obj is None:
|
492 |
+
return "Please upload a file first!"
|
493 |
+
|
494 |
+
try:
|
495 |
+
# Load and convert the data
|
496 |
+
data = load_from_local_file(file_obj.name, file_format)
|
497 |
+
|
498 |
+
# Save the converted data
|
499 |
+
os.makedirs("data", exist_ok=True)
|
500 |
+
with open("data/annotated_data.json", "wt") as file:
|
501 |
+
json.dump(data, file, ensure_ascii=False)
|
502 |
+
|
503 |
+
return f"Successfully loaded and converted {len(data)} examples from {file_format} file!"
|
504 |
+
except Exception as e:
|
505 |
+
return f"Error processing file: {str(e)}"
|
506 |
+
|
507 |
+
# Create the main interface with tabs
|
508 |
+
with gr.Blocks() as demo:
|
509 |
+
gr.Markdown("# NER Annotation Tool")
|
510 |
+
|
511 |
+
with gr.Tabs():
|
512 |
+
with gr.TabItem("Auto Annotation"):
|
513 |
+
with gr.Row():
|
514 |
+
with gr.Column():
|
515 |
+
file_uploader = gr.File(label="Upload text file (one sentence per line)")
|
516 |
+
upload_status = gr.Textbox(label="Upload Status")
|
517 |
+
file_uploader.change(fn=process_uploaded_file, inputs=[file_uploader], outputs=[upload_status])
|
518 |
+
|
519 |
+
with gr.Column():
|
520 |
+
model = gr.Dropdown(
|
521 |
+
label="Choose the model for annotation",
|
522 |
+
choices=AVAILABLE_MODELS,
|
523 |
+
value=AVAILABLE_MODELS[0]
|
524 |
+
)
|
525 |
+
labels = gr.Textbox(
|
526 |
+
label="Labels",
|
527 |
+
placeholder="Enter comma-separated labels (e.g., PERSON,ORG,LOC)",
|
528 |
+
scale=2
|
529 |
+
)
|
530 |
+
threshold = gr.Slider(
|
531 |
+
0, 1,
|
532 |
+
value=0.3,
|
533 |
+
step=0.01,
|
534 |
+
label="Threshold",
|
535 |
+
info="Lower threshold increases entity predictions"
|
536 |
+
)
|
537 |
+
prompt = gr.Textbox(
|
538 |
+
label="Prompt",
|
539 |
+
placeholder="Enter your annotation prompt (optional)",
|
540 |
+
scale=2
|
541 |
+
)
|
542 |
+
annotate_btn = gr.Button("Annotate Data")
|
543 |
+
output_info = gr.Textbox(label="Processing Status")
|
544 |
+
|
545 |
+
annotate_btn.click(
|
546 |
+
fn=annotate,
|
547 |
+
inputs=[model, labels, threshold, prompt],
|
548 |
+
outputs=[output_info]
|
549 |
+
)
|
550 |
+
|
551 |
+
with gr.TabItem("Dataset Viewer"):
|
552 |
+
with gr.Row():
|
553 |
+
with gr.Column():
|
554 |
+
with gr.Row():
|
555 |
+
load_local_btn = gr.Button("Load Local Dataset")
|
556 |
+
load_hf_btn = gr.Button("Load from Hugging Face")
|
557 |
+
|
558 |
+
local_file = gr.File(label="Upload Local Dataset", visible=False)
|
559 |
+
file_format = gr.Dropdown(
|
560 |
+
choices=["json", "conll", "txt"],
|
561 |
+
value="json",
|
562 |
+
label="File Format",
|
563 |
+
visible=False
|
564 |
+
)
|
565 |
+
local_status = gr.Textbox(label="Local File Status", visible=False)
|
566 |
+
|
567 |
+
dataset_name = gr.Textbox(
|
568 |
+
label="Hugging Face Dataset Name",
|
569 |
+
placeholder="Enter dataset name (e.g., conll2003)",
|
570 |
+
visible=False
|
571 |
+
)
|
572 |
+
dataset_split = gr.Dropdown(
|
573 |
+
choices=["train", "validation", "test"],
|
574 |
+
value="train",
|
575 |
+
label="Dataset Split",
|
576 |
+
visible=False
|
577 |
+
)
|
578 |
+
|
579 |
+
bar = gr.Slider(minimum=0, maximum=1, step=1, label="Progress", interactive=False)
|
580 |
+
|
581 |
+
with gr.Row():
|
582 |
+
previous_btn = gr.Button("Previous example")
|
583 |
+
apply_btn = gr.Button("Apply changes")
|
584 |
+
next_btn = gr.Button("Next example")
|
585 |
+
|
586 |
+
validate_btn = gr.Button("Validate")
|
587 |
+
save_btn = gr.Button("Save validated dataset")
|
588 |
+
|
589 |
+
inp_box = gr.HighlightedText(value=None, interactive=True)
|
590 |
+
|
591 |
+
def toggle_local_inputs():
|
592 |
+
return {
|
593 |
+
local_file: gr.update(visible=True),
|
594 |
+
file_format: gr.update(visible=True),
|
595 |
+
local_status: gr.update(visible=True),
|
596 |
+
dataset_name: gr.update(visible=False),
|
597 |
+
dataset_split: gr.update(visible=False)
|
598 |
+
}
|
599 |
+
|
600 |
+
def toggle_hf_inputs():
|
601 |
+
return {
|
602 |
+
local_file: gr.update(visible=False),
|
603 |
+
file_format: gr.update(visible=False),
|
604 |
+
local_status: gr.update(visible=False),
|
605 |
+
dataset_name: gr.update(visible=True),
|
606 |
+
dataset_split: gr.update(visible=True)
|
607 |
+
}
|
608 |
+
|
609 |
+
load_local_btn.click(
|
610 |
+
fn=toggle_local_inputs,
|
611 |
+
inputs=None,
|
612 |
+
outputs=[local_file, file_format, local_status, dataset_name, dataset_split]
|
613 |
+
)
|
614 |
+
|
615 |
+
load_hf_btn.click(
|
616 |
+
fn=toggle_hf_inputs,
|
617 |
+
inputs=None,
|
618 |
+
outputs=[local_file, file_format, local_status, dataset_name, dataset_split]
|
619 |
+
)
|
620 |
+
|
621 |
+
def process_and_load_local(file_obj, format):
|
622 |
+
status = process_local_file(file_obj, format)
|
623 |
+
if "Successfully" in status:
|
624 |
+
return load_dataset()
|
625 |
+
return [status], 0, 0
|
626 |
+
|
627 |
+
local_file.change(
|
628 |
+
fn=process_and_load_local,
|
629 |
+
inputs=[local_file, file_format],
|
630 |
+
outputs=[inp_box, bar]
|
631 |
+
)
|
632 |
+
|
633 |
+
def load_hf_dataset(name, split):
|
634 |
+
status = load_from_huggingface(name, split)
|
635 |
+
if "Successfully" in status:
|
636 |
+
return load_dataset()
|
637 |
+
return [status], 0, 0
|
638 |
+
|
639 |
+
load_hf_btn.click(
|
640 |
+
fn=load_hf_dataset,
|
641 |
+
inputs=[dataset_name, dataset_split],
|
642 |
+
outputs=[inp_box, bar]
|
643 |
+
)
|
644 |
+
|
645 |
+
apply_btn.click(fn=update_example, inputs=inp_box, outputs=inp_box)
|
646 |
+
save_btn.click(fn=save_dataset, inputs=inp_box, outputs=inp_box)
|
647 |
+
validate_btn.click(fn=validate_example, inputs=None, outputs=inp_box)
|
648 |
+
next_btn.click(fn=next_example, inputs=None, outputs=[inp_box, bar])
|
649 |
+
previous_btn.click(fn=previous_example, inputs=None, outputs=[inp_box, bar])
|
650 |
+
|
651 |
+
demo.launch()
|
data/annotated_data.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "ner-annotation"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"datasets>=3.6.0",
|
9 |
+
"gliner>=0.2.20",
|
10 |
+
"gradio>=5.31.0",
|
11 |
+
"huggingface-hub>=0.32.1",
|
12 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.31.0
|
2 |
+
datasets>=3.6.0
|
3 |
+
gliner>=0.2.20
|
4 |
+
huggingface-hub>=0.32.1
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|