Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- app.py +292 -59
- requirements.txt +7 -1
.gitattributes
CHANGED
@@ -33,6 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
36 |
app_store.png filter=lfs diff=lfs merge=lfs -text
|
37 |
apple_music.png filter=lfs diff=lfs merge=lfs -text
|
38 |
safari_google.png filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
app_store.png filter=lfs diff=lfs merge=lfs -text
|
38 |
apple_music.png filter=lfs diff=lfs merge=lfs -text
|
39 |
safari_google.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,64 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from peft import PeftModel
|
11 |
+
from PIL import Image, ImageDraw
|
12 |
+
from qwen_vl_utils import process_vision_info
|
13 |
+
from transformers import (
|
14 |
+
AutoProcessor,
|
15 |
+
)
|
16 |
+
|
17 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoConfig
|
18 |
+
from peft.peft_model import PeftModel
|
19 |
+
|
20 |
+
def load_model_and_processor(model_path, lora_path=None, merge_lora=True):
|
21 |
+
"""
|
22 |
+
Load the Qwen2.5-VL model and processor with optional LoRA weights.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
args: Arguments containing:
|
26 |
+
- model_path: Path to the base model
|
27 |
+
- precision: Model precision ("fp16", "bf16", or "fp32")
|
28 |
+
- lora_path: Path to LoRA weights (optional)
|
29 |
+
- merge_lora: Boolean indicating whether to merge LoRA weights
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
tuple: (processor, model) - The initialized processor and model
|
33 |
+
"""
|
34 |
+
# Initialize processor
|
35 |
+
try:
|
36 |
+
processor = AutoProcessor.from_pretrained(
|
37 |
+
model_path,
|
38 |
+
min_pixels=256*28*28,
|
39 |
+
max_pixels=1344*28*28,
|
40 |
+
model_max_length=8196,
|
41 |
+
)
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading processor: {e}")
|
44 |
+
processor = None
|
45 |
+
config = AutoConfig.from_pretrained(model_path)
|
46 |
+
print(config)
|
47 |
+
raise e
|
48 |
+
# Initialize base model
|
49 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
50 |
+
model_path,
|
51 |
+
device_map="cpu",
|
52 |
+
torch_dtype=torch.bfloat16,
|
53 |
+
# attn_implementation="flash_attention_2",
|
54 |
+
)
|
55 |
+
|
56 |
+
# Load LoRA weights if path is provided
|
57 |
+
if lora_path is not None and len(lora_path) > 0:
|
58 |
+
print(f"Loading LoRA weights from {lora_path}")
|
59 |
+
model = PeftModel.from_pretrained(model, lora_path)
|
60 |
+
|
61 |
+
if merge_lora:
|
62 |
+
print("Merging LoRA weights into base model")
|
63 |
+
model = model.merge_and_unload()
|
64 |
+
|
65 |
+
model.eval()
|
66 |
+
|
67 |
+
return processor, model
|
68 |
+
# Define constants
|
69 |
+
DESCRIPTION = "[TongUI Demo](https://huggingface.co/datasets/Bofeee5675/TongUI-143K)"
|
70 |
+
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
|
71 |
+
MIN_PIXELS = 256 * 28 * 28
|
72 |
+
MAX_PIXELS = 1344 * 28 * 28
|
73 |
+
|
74 |
+
processor, model = load_model_and_processor(
|
75 |
+
model_path="Qwen/Qwen2.5-VL-3B-Instruct",
|
76 |
+
lora_path="Bofeee5675/TongUI-3B",
|
77 |
+
merge_lora=True,
|
78 |
)
|
79 |
+
# Helper functions
|
80 |
+
def draw_point(image_input, point=None, radius=5):
|
81 |
+
"""Draw a point on the image."""
|
82 |
+
if isinstance(image_input, str):
|
83 |
+
image = Image.open(image_input)
|
84 |
+
else:
|
85 |
+
image = Image.fromarray(np.uint8(image_input))
|
86 |
+
|
87 |
+
if point:
|
88 |
+
x, y = point[0] * image.width, point[1] * image.height
|
89 |
+
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
|
90 |
+
return image
|
91 |
+
|
92 |
+
def array_to_image_path(image_array):
|
93 |
+
"""Save the uploaded image and return its path."""
|
94 |
+
if image_array is None:
|
95 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
96 |
+
img = Image.fromarray(np.uint8(image_array))
|
97 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
98 |
+
filename = f"image_{timestamp}.png"
|
99 |
+
img.save(filename)
|
100 |
+
return os.path.abspath(filename)
|
101 |
+
|
102 |
+
@spaces.GPU
|
103 |
+
def run_tongui(image, query):
|
104 |
+
"""Main function for inference."""
|
105 |
+
image_path = array_to_image_path(image)
|
106 |
+
|
107 |
+
messages = [
|
108 |
+
{
|
109 |
+
"role": "user",
|
110 |
+
"content": [
|
111 |
+
{"type": "text", "text": _SYSTEM},
|
112 |
+
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
|
113 |
+
{"type": "text", "text": query}
|
114 |
+
],
|
115 |
+
}
|
116 |
+
]
|
117 |
+
|
118 |
+
# Prepare inputs for the model
|
119 |
+
|
120 |
+
global model
|
121 |
+
|
122 |
+
model = model.to("cuda")
|
123 |
+
|
124 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
125 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
126 |
+
inputs = processor(
|
127 |
+
text=[text],
|
128 |
+
images=image_inputs,
|
129 |
+
videos=video_inputs,
|
130 |
+
padding=True,
|
131 |
+
return_tensors="pt"
|
132 |
+
)
|
133 |
+
inputs = inputs.to("cuda")
|
134 |
+
|
135 |
+
# Generate output
|
136 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
137 |
+
generated_ids_trimmed = [
|
138 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
139 |
+
]
|
140 |
+
output_text = processor.batch_decode(
|
141 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
142 |
+
)[0]
|
143 |
+
|
144 |
+
# Parse the output into coordinates
|
145 |
+
click_xy = ast.literal_eval(output_text)
|
146 |
+
|
147 |
+
# Draw the point on the image
|
148 |
+
result_image = draw_point(image_path, click_xy, radius=10)
|
149 |
+
return result_image, str(click_xy)
|
150 |
+
|
151 |
+
# Function to record votes
|
152 |
+
def record_vote(vote_type, image_path, query, action_generated):
|
153 |
+
"""Record a vote in a JSON file."""
|
154 |
+
vote_data = {
|
155 |
+
"vote_type": vote_type,
|
156 |
+
"image_path": image_path,
|
157 |
+
"query": query,
|
158 |
+
"action_generated": action_generated,
|
159 |
+
"timestamp": datetime.now().isoformat()
|
160 |
+
}
|
161 |
+
with open("votes.json", "a") as f:
|
162 |
+
f.write(json.dumps(vote_data) + "\n")
|
163 |
+
return f"Your {vote_type} has been recorded. Thank you!"
|
164 |
+
|
165 |
+
# Helper function to handle vote recording
|
166 |
+
def handle_vote(vote_type, image_path, query, action_generated):
|
167 |
+
"""Handle vote recording by using the consistent image path."""
|
168 |
+
if image_path is None:
|
169 |
+
return "No image uploaded. Please upload an image before voting."
|
170 |
+
return record_vote(vote_type, image_path, query, action_generated)
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
# Define layout and UI
|
176 |
+
def build_demo(embed_mode, concurrency_count=1):
|
177 |
+
with gr.Blocks(title="TongUI Demo", theme=gr.themes.Default()) as demo:
|
178 |
+
# State to store the consistent image path
|
179 |
+
state_image_path = gr.State(value=None)
|
180 |
+
|
181 |
+
if not embed_mode:
|
182 |
+
gr.HTML(
|
183 |
+
"""
|
184 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
185 |
+
<p>TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials</p>
|
186 |
+
</div>
|
187 |
+
"""
|
188 |
+
)
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column(scale=3):
|
192 |
+
# Input components
|
193 |
+
imagebox = gr.Image(type="numpy", label="Input Screenshot")
|
194 |
+
textbox = gr.Textbox(
|
195 |
+
show_label=True,
|
196 |
+
placeholder="Enter a query (e.g., 'Click Nahant')",
|
197 |
+
label="Query",
|
198 |
+
)
|
199 |
+
submit_btn = gr.Button(value="Submit", variant="primary")
|
200 |
+
|
201 |
+
# Placeholder examples
|
202 |
+
gr.Examples(
|
203 |
+
examples=[
|
204 |
+
["./examples/app_store.png", "Download Kindle."],
|
205 |
+
["./examples/apple_music.png", "Star to favorite."],
|
206 |
+
["./examples/safari_google.png", "Click on search bar."],
|
207 |
+
],
|
208 |
+
inputs=[imagebox, textbox],
|
209 |
+
examples_per_page=3
|
210 |
+
)
|
211 |
+
|
212 |
+
with gr.Column(scale=8):
|
213 |
+
# Output components
|
214 |
+
output_img = gr.Image(type="pil", label="Output Image")
|
215 |
+
# Add a note below the image to explain the red point
|
216 |
+
gr.HTML(
|
217 |
+
"""
|
218 |
+
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
|
219 |
+
"""
|
220 |
+
)
|
221 |
+
output_coords = gr.Textbox(label="Clickable Coordinates")
|
222 |
+
|
223 |
+
# Buttons for voting, flagging, regenerating, and clearing
|
224 |
+
with gr.Row(elem_id="action-buttons", equal_height=True):
|
225 |
+
vote_btn = gr.Button(value="π Vote", variant="secondary")
|
226 |
+
downvote_btn = gr.Button(value="π Downvote", variant="secondary")
|
227 |
+
flag_btn = gr.Button(value="π© Flag", variant="secondary")
|
228 |
+
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary")
|
229 |
+
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button
|
230 |
+
|
231 |
+
# Define button actions
|
232 |
+
def on_submit(image, query):
|
233 |
+
"""Handle the submit button click."""
|
234 |
+
if image is None:
|
235 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
236 |
+
|
237 |
+
# Generate consistent image path and store it in the state
|
238 |
+
image_path = array_to_image_path(image)
|
239 |
+
return run_tongui(image, query) + (image_path,)
|
240 |
+
|
241 |
+
submit_btn.click(
|
242 |
+
on_submit,
|
243 |
+
[imagebox, textbox],
|
244 |
+
[output_img, output_coords, state_image_path],
|
245 |
+
)
|
246 |
+
|
247 |
+
clear_btn.click(
|
248 |
+
lambda: (None, None, None, None, None),
|
249 |
+
inputs=None,
|
250 |
+
outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs
|
251 |
+
queue=False
|
252 |
+
)
|
253 |
+
|
254 |
+
regenerate_btn.click(
|
255 |
+
lambda image, query, state_image_path: run_tongui(image, query),
|
256 |
+
[imagebox, textbox, state_image_path],
|
257 |
+
[output_img, output_coords],
|
258 |
+
)
|
259 |
+
|
260 |
+
# Record vote actions without feedback messages
|
261 |
+
vote_btn.click(
|
262 |
+
lambda image_path, query, action_generated: handle_vote(
|
263 |
+
"upvote", image_path, query, action_generated
|
264 |
+
),
|
265 |
+
inputs=[state_image_path, textbox, output_coords],
|
266 |
+
outputs=[],
|
267 |
+
queue=False
|
268 |
+
)
|
269 |
+
|
270 |
+
downvote_btn.click(
|
271 |
+
lambda image_path, query, action_generated: handle_vote(
|
272 |
+
"downvote", image_path, query, action_generated
|
273 |
+
),
|
274 |
+
inputs=[state_image_path, textbox, output_coords],
|
275 |
+
outputs=[],
|
276 |
+
queue=False
|
277 |
+
)
|
278 |
|
279 |
+
flag_btn.click(
|
280 |
+
lambda image_path, query, action_generated: handle_vote(
|
281 |
+
"flag", image_path, query, action_generated
|
282 |
+
),
|
283 |
+
inputs=[state_image_path, textbox, output_coords],
|
284 |
+
outputs=[],
|
285 |
+
queue=False
|
286 |
+
)
|
287 |
|
288 |
+
return demo
|
289 |
+
# Launch the app
|
290 |
if __name__ == "__main__":
|
291 |
+
demo = build_demo(embed_mode=False)
|
292 |
+
demo.queue(api_open=False).launch(
|
293 |
+
server_name="0.0.0.0",
|
294 |
+
server_port=7860,
|
295 |
+
ssr_mode=False,
|
296 |
+
debug=True,
|
297 |
+
)
|
requirements.txt
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub>=0.30.0
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
peft
|
5 |
+
qwen_vl_utils
|
6 |
+
torchvision
|
7 |
+
git+https://github.com/huggingface/transformers.git
|