Spaces:
Running
on
Zero
Running
on
Zero
import ast | |
import json | |
import os | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from peft import PeftModel | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import ( | |
AutoProcessor, | |
) | |
from omegaconf import OmegaConf | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoConfig | |
from peft.peft_model import PeftModel | |
config = OmegaConf.load("app_config.yaml") | |
def load_model_and_processor(model_path, lora_path=None, merge_lora=True): | |
""" | |
Load the Qwen2.5-VL model and processor with optional LoRA weights. | |
Args: | |
args: Arguments containing: | |
- model_path: Path to the base model | |
- precision: Model precision ("fp16", "bf16", or "fp32") | |
- lora_path: Path to LoRA weights (optional) | |
- merge_lora: Boolean indicating whether to merge LoRA weights | |
Returns: | |
tuple: (processor, model) - The initialized processor and model | |
""" | |
# Initialize processor | |
try: | |
processor = AutoProcessor.from_pretrained( | |
model_path, | |
min_pixels=256*28*28, | |
max_pixels=1344*28*28, | |
model_max_length=8196, | |
) | |
except Exception as e: | |
print(f"Error loading processor: {e}") | |
processor = None | |
config = AutoConfig.from_pretrained(model_path) | |
print(config) | |
raise e | |
# Initialize base model | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
model_path, | |
device_map="cpu", | |
torch_dtype=torch.bfloat16, | |
# attn_implementation="flash_attention_2", | |
) | |
# Load LoRA weights if path is provided | |
if lora_path is not None and len(lora_path) > 0: | |
print(f"Loading LoRA weights from {lora_path}") | |
model = PeftModel.from_pretrained(model, lora_path) | |
if merge_lora: | |
print("Merging LoRA weights into base model") | |
model = model.merge_and_unload() | |
model.eval() | |
return processor, model | |
# Define constants | |
DESCRIPTION = "[TongUI Demo](https://huggingface.co/datasets/Bofeee5675/TongUI-143K)" | |
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
MIN_PIXELS = 256 * 28 * 28 | |
MAX_PIXELS = 1344 * 28 * 28 | |
processor, model = load_model_and_processor( | |
model_path=config.model, | |
lora_path=config.lora_path, | |
merge_lora=True, | |
) | |
# Helper functions | |
def draw_point(image_input, point=None, radius=5): | |
"""Draw a point on the image.""" | |
if isinstance(image_input, str): | |
image = Image.open(image_input) | |
else: | |
image = Image.fromarray(np.uint8(image_input)) | |
if point: | |
x, y = point[0] * image.width, point[1] * image.height | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
return image | |
def array_to_image_path(image_array): | |
"""Save the uploaded image and return its path.""" | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
img = Image.fromarray(np.uint8(image_array)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
img.save(filename) | |
return os.path.abspath(filename) | |
def run_tongui(image, query): | |
"""Main function for inference.""" | |
image_path = array_to_image_path(image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": _SYSTEM}, | |
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
{"type": "text", "text": query} | |
], | |
} | |
] | |
# Prepare inputs for the model | |
global model | |
model = model.to("cuda") | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs = inputs.to("cuda") | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Parse the output into coordinates | |
click_xy = ast.literal_eval(output_text) | |
# Draw the point on the image | |
result_image = draw_point(image_path, click_xy, radius=10) | |
return result_image, str(click_xy) | |
# Function to record votes | |
def record_vote(vote_type, image_path, query, action_generated): | |
"""Record a vote in a JSON file.""" | |
vote_data = { | |
"vote_type": vote_type, | |
"image_path": image_path, | |
"query": query, | |
"action_generated": action_generated, | |
"timestamp": datetime.now().isoformat() | |
} | |
with open("votes.json", "a") as f: | |
f.write(json.dumps(vote_data) + "\n") | |
return f"Your {vote_type} has been recorded. Thank you!" | |
# Helper function to handle vote recording | |
def handle_vote(vote_type, image_path, query, action_generated): | |
"""Handle vote recording by using the consistent image path.""" | |
if image_path is None: | |
return "No image uploaded. Please upload an image before voting." | |
return record_vote(vote_type, image_path, query, action_generated) | |
# Define layout and UI | |
def build_demo(embed_mode, concurrency_count=1): | |
with gr.Blocks(title="TongUI Demo", theme=gr.themes.Default()) as demo: | |
# State to store the consistent image path | |
state_image_path = gr.State(value=None) | |
if not embed_mode: | |
gr.HTML( | |
""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<p>TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
# Input components | |
imagebox = gr.Image(type="numpy", label="Input Screenshot") | |
textbox = gr.Textbox( | |
show_label=True, | |
placeholder="Enter a query (e.g., 'Click Nahant')", | |
label="Query", | |
) | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
# Placeholder examples | |
gr.Examples( | |
examples=[ | |
["./examples/app_store.png", "Download Kindle."], | |
["./examples/apple_music.png", "Star to favorite."], | |
["./examples/safari_google.png", "Click on search bar."], | |
], | |
inputs=[imagebox, textbox], | |
examples_per_page=3 | |
) | |
with gr.Column(scale=8): | |
# Output components | |
output_img = gr.Image(type="pil", label="Output Image") | |
# Add a note below the image to explain the red point | |
gr.HTML( | |
""" | |
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p> | |
""" | |
) | |
output_coords = gr.Textbox(label="Clickable Coordinates") | |
# Buttons for voting, flagging, regenerating, and clearing | |
with gr.Row(elem_id="action-buttons", equal_height=True): | |
vote_btn = gr.Button(value="π Vote", variant="secondary") | |
downvote_btn = gr.Button(value="π Downvote", variant="secondary") | |
flag_btn = gr.Button(value="π© Flag", variant="secondary") | |
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary") | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button | |
# Define button actions | |
def on_submit(image, query): | |
"""Handle the submit button click.""" | |
if image is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
# Generate consistent image path and store it in the state | |
image_path = array_to_image_path(image) | |
return run_tongui(image, query) + (image_path,) | |
submit_btn.click( | |
on_submit, | |
[imagebox, textbox], | |
[output_img, output_coords, state_image_path], | |
) | |
clear_btn.click( | |
lambda: (None, None, None, None, None), | |
inputs=None, | |
outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs | |
queue=False | |
) | |
regenerate_btn.click( | |
lambda image, query, state_image_path: run_tongui(image, query), | |
[imagebox, textbox, state_image_path], | |
[output_img, output_coords], | |
) | |
# Record vote actions without feedback messages | |
vote_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"upvote", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
downvote_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"downvote", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
flag_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"flag", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
return demo | |
# Launch the app | |
if __name__ == "__main__": | |
demo = build_demo(embed_mode=False) | |
demo.queue(api_open=False).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
ssr_mode=False, | |
debug=True, | |
) |