File size: 10,528 Bytes
99738e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import math
from typing import Callable

import torch
from einops import rearrange, repeat
from torch import Tensor

from .model import Flux
from .modules.conditioner import HFEmbedder


def get_noise(
    num_samples: int,
    height: int,
    width: int,
    device: torch.device,
    dtype: torch.dtype,
    seed: int,
):
    return torch.randn(
        num_samples,
        16,
        # allow for packing
        2 * math.ceil(height / 16),
        2 * math.ceil(width / 16),
        device=device,
        dtype=dtype,
        generator=torch.Generator(device=device).manual_seed(seed),
    )


def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str], use_spatial_condition=False, use_share_weight_referencenet=False, share_position_embedding=False) -> dict[str, Tensor]:
    bs, c, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    if use_spatial_condition:
        if share_position_embedding:
            img_ids = torch.zeros(h // 2, w // 2, 3)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
            img_ids = torch.cat([img_ids, img_ids], dim=1)
        else:
            img_ids = torch.zeros(h // 2, w, 3)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(w)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
    elif use_share_weight_referencenet:
        if share_position_embedding:
            single_img_ids = torch.zeros(h // 2, w // 2, 3)
            single_img_ids[..., 1] = single_img_ids[..., 1] + torch.arange(h // 2)[:, None]
            single_img_ids[..., 2] = single_img_ids[..., 2] + torch.arange(w // 2)[None, :]
            single_img_ids = repeat(single_img_ids, "h w c -> b (h w) c", b=bs)
            img_ids = torch.cat([single_img_ids, single_img_ids], dim=1)
        else:
            # single_img_position_embedding
            single_img_ids = torch.zeros(h // 2, w // 2, 3)
            single_img_ids[..., 1] = single_img_ids[..., 1] + torch.arange(h // 2)[:, None]
            single_img_ids[..., 2] = single_img_ids[..., 2] + torch.arange(w // 2)[None, :]
            single_img_ids = repeat(single_img_ids, "h w c -> b (h w) c", b=bs)
            # ref_and_noise_img_position_embedding
            img_ids = torch.zeros(h // 2, w, 3)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(w)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
    else:
        img_ids = torch.zeros(h // 2, w // 2, 3)
        img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
        img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)
    if not use_share_weight_referencenet:
        return {
            "img": img,
            "img_ids": img_ids.to(img.device),
            "txt": txt.to(img.device),
            "txt_ids": txt_ids.to(img.device),
            "vec": vec.to(img.device),
        }
    else:
        return {
            "img": img,
            "img_ids": img_ids.to(img.device),
            "txt": txt.to(img.device),
            "txt_ids": txt_ids.to(img.device),
            "vec": vec.to(img.device),
            "single_img_ids": single_img_ids.to(img.device),
        }


def time_shift(mu: float, sigma: float, t: Tensor):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


def get_lin_function(
    x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
    m = (y2 - y1) / (x2 - x1)
    b = y1 - m * x1
    return lambda x: m * x + b


def get_schedule(
    num_steps: int,
    image_seq_len: int,
    base_shift: float = 0.5,
    max_shift: float = 1.15,
    shift: bool = True,
) -> list[float]:
    # extra step for zero
    timesteps = torch.linspace(1, 0, num_steps + 1)

    # shifting the schedule to favor high timesteps for higher signal images
    if shift:
        # eastimate mu based on linear estimation between two points
        mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
        timesteps = time_shift(mu, 1.0, timesteps)

    return timesteps.tolist()


def denoise(
    model: Flux,
    # model input
    img: Tensor,
    img_ids: Tensor,
    txt: Tensor,
    txt_ids: Tensor,
    vec: Tensor,
    neg_txt: Tensor,
    neg_txt_ids: Tensor,
    neg_vec: Tensor,
    # sampling parameters
    timesteps: list[float],
    guidance: float = 4.0,
    true_gs = 1,
    timestep_to_start_cfg=0,
    # ip-adapter parameters
    image_proj: Tensor=None, 
    neg_image_proj: Tensor=None, 
    ip_scale: Tensor | float = 1.0,
    neg_ip_scale: Tensor | float = 1.0,
    source_image: Tensor=None,
    use_share_weight_referencenet=False,
    single_img_ids=None,
    neg_single_img_ids=None,
    single_block_refnet=False,
    double_block_refnet=False,
):
    i = 0
    # this is ignored for schnell
    guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
    for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
        t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
        if source_image is not None:  # spatial condition or refnet
            img = torch.cat([source_image, img],dim=-2)
        pred = model(
            img=img,
            img_ids=img_ids,
            txt=txt,
            txt_ids=txt_ids,
            y=vec,
            timesteps=t_vec,
            guidance=guidance_vec,
            image_proj=image_proj,
            ip_scale=ip_scale, 
            use_share_weight_referencenet=use_share_weight_referencenet,
            single_img_ids=single_img_ids,
            single_block_refnet=single_block_refnet,
            double_block_refnet=double_block_refnet,
        )
        if i >= timestep_to_start_cfg:
            neg_pred = model(
                img=img,
                img_ids=img_ids,
                txt=neg_txt,
                txt_ids=neg_txt_ids,
                y=neg_vec,
                timesteps=t_vec,
                guidance=guidance_vec, 
                image_proj=neg_image_proj,
                ip_scale=neg_ip_scale, 
                use_share_weight_referencenet=use_share_weight_referencenet,
                single_img_ids=neg_single_img_ids,
                single_block_refnet=single_block_refnet,
                double_block_refnet=double_block_refnet,
            )     
            pred = neg_pred + true_gs * (pred - neg_pred)
        if use_share_weight_referencenet:
            zero_buffer = torch.zeros_like(pred)
            pred = torch.cat([zero_buffer, pred], dim=1)
        img = img + (t_prev - t_curr) * pred
        if (source_image is not None): # spatial condition or refnet
            latent_length = img.shape[-2] // 2
            img = img[:,latent_length:,:]
        i += 1
    return img

def denoise_controlnet(
    model: Flux,
    controlnet:None,
    # model input
    img: Tensor,
    img_ids: Tensor,
    txt: Tensor,
    txt_ids: Tensor,
    vec: Tensor,
    neg_txt: Tensor,
    neg_txt_ids: Tensor,
    neg_vec: Tensor,
    controlnet_cond,
    # sampling parameters
    timesteps: list[float],
    guidance: float = 4.0,
    true_gs = 1,
    controlnet_gs=0.7,
    timestep_to_start_cfg=0,
    # ip-adapter parameters
    image_proj: Tensor=None, 
    neg_image_proj: Tensor=None, 
    ip_scale: Tensor | float = 1, 
    neg_ip_scale: Tensor | float = 1, 
):
    # this is ignored for schnell
    i = 0
    guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
    for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
        t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
        block_res_samples = controlnet(
                    img=img,
                    img_ids=img_ids,
                    controlnet_cond=controlnet_cond,
                    txt=txt,
                    txt_ids=txt_ids,
                    y=vec,
                    timesteps=t_vec,
                    guidance=guidance_vec,
                )
        pred = model(
            img=img,
            img_ids=img_ids,
            txt=txt,
            txt_ids=txt_ids,
            y=vec,
            timesteps=t_vec,
            guidance=guidance_vec,
            block_controlnet_hidden_states=[i * controlnet_gs for i in block_res_samples],
            image_proj=image_proj,
            ip_scale=ip_scale,
        )
        if i >= timestep_to_start_cfg:
            neg_block_res_samples = controlnet(
                        img=img,
                        img_ids=img_ids,
                        controlnet_cond=controlnet_cond,
                        txt=neg_txt,
                        txt_ids=neg_txt_ids,
                        y=neg_vec,
                        timesteps=t_vec,
                        guidance=guidance_vec,
                    )
            neg_pred = model(
                img=img,
                img_ids=img_ids,
                txt=neg_txt,
                txt_ids=neg_txt_ids,
                y=neg_vec,
                timesteps=t_vec,
                guidance=guidance_vec,
                block_controlnet_hidden_states=[i * controlnet_gs for i in neg_block_res_samples],
                image_proj=neg_image_proj,
                ip_scale=neg_ip_scale, 
            )     
            pred = neg_pred + true_gs * (pred - neg_pred)
   
        img = img + (t_prev - t_curr) * pred

        i += 1
    return img

def unpack(x: Tensor, height: int, width: int) -> Tensor:
    return rearrange(
        x,
        "b (h w) (c ph pw) -> b c (h ph) (w pw)",
        h=math.ceil(height / 16),
        w=math.ceil(width / 16),
        ph=2,
        pw=2,
    )