Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
-
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow import keras
|
|
|
|
|
5 |
import torch
|
6 |
+
from speechbrain.inference.TTS import Tacotron2
|
7 |
+
|
8 |
+
# Cargar Tacotron2
|
9 |
+
tacotron2 = Tacotron2.from_hparams(
|
10 |
+
source="speechbrain/tts-tacotron2-ljspeech",
|
11 |
+
savedir="tmpdir_tts",
|
12 |
+
run_opts={"device": "cpu"}
|
13 |
+
)
|
14 |
+
|
15 |
+
# Cargar tu modelo generator.keras
|
16 |
+
generator = keras.models.load_model("ruta_o_url_de_tu_modelo_en_hf", compile=False)
|
17 |
+
|
18 |
+
# Funci贸n de generaci贸n
|
19 |
+
def text_to_audio(text):
|
20 |
+
# 1. Convertir texto a mel-spectrograma
|
21 |
+
mel_output, _, _ = tacotron2.encode_text(text)
|
22 |
+
mel = mel_output.squeeze(0).detach().cpu().numpy().astype(np.float32) # (80, frames)
|
23 |
+
|
24 |
+
# 2. Preparar para generator
|
25 |
+
mel_input = mel[np.newaxis, ..., np.newaxis] # (1, 80, frames, 1)
|
26 |
+
mel_input = tf.convert_to_tensor(mel_input)
|
27 |
+
|
28 |
+
# 3. Usar generator para generar audio
|
29 |
+
fake_audio = generator(mel_input, training=False)
|
30 |
+
fake_audio = tf.squeeze(fake_audio, axis=0).numpy() # (samples,)
|
31 |
+
|
32 |
+
# 4. Asegurar que est茅 en [-1, 1] para audio
|
33 |
+
fake_audio = np.clip(fake_audio, -1.0, 1.0)
|
34 |
+
|
35 |
+
# 5. Devolver audio como (numpy_array, sample_rate)
|
36 |
+
return fake_audio, 8000 # tu modelo est谩 entrenado en 8 kHz, 驴verdad?
|
37 |
+
|
38 |
+
# Interfaz Gradio
|
39 |
+
interface = gr.Interface(
|
40 |
+
fn=text_to_audio,
|
41 |
+
inputs=gr.Textbox(lines=1, placeholder="Escribe un n煤mero (ej. nine)"),
|
42 |
+
outputs=gr.Audio(type="numpy", label="Audio generado"),
|
43 |
+
title="Demo de TTS con Tacotron2 + Generator",
|
44 |
+
description="Convierte texto en audio usando Tacotron2 + tu modelo generator."
|
45 |
+
)
|
46 |
+
|
47 |
+
# Lanzar app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
if __name__ == "__main__":
|
49 |
+
interface.launch()
|