Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,92 +6,36 @@ from huggingface_hub import hf_hub_download
|
|
6 |
import time
|
7 |
import os
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
try:
|
14 |
-
for gpu in physical_devices:
|
15 |
-
tf.config.experimental.set_memory_growth(gpu, True)
|
16 |
-
print("Configuraci贸n de GPU completada")
|
17 |
-
except Exception as e:
|
18 |
-
print(f"Error en configuraci贸n de GPU: {e}")
|
19 |
-
else:
|
20 |
-
print("No se detect贸 GPU. El procesamiento ser谩 m谩s lento.")
|
21 |
|
22 |
-
|
23 |
def fourier_transform(x):
|
24 |
fourier = tf.signal.fft2d(tf.cast(x, tf.complex64))
|
25 |
fourier = tf.complex(tf.math.real(fourier), tf.math.imag(fourier))
|
26 |
fourier = tf.abs(fourier)
|
27 |
return tf.concat([tf.math.real(fourier), tf.math.imag(fourier)], axis=-1)
|
28 |
|
|
|
29 |
def inverse_fourier_transform(x):
|
30 |
real_part, imag_part = tf.split(x, num_or_size_splits=2, axis=-1)
|
31 |
complex_fourier = tf.complex(real_part, imag_part)
|
32 |
return tf.abs(tf.signal.ifft2d(complex_fourier))
|
33 |
-
|
34 |
-
# Construir modelo manualmente
|
35 |
-
def build_autoencoder(input_shape=(256, 256, 3)):
|
36 |
-
"""Reconstruir el modelo autoencoder manualmente"""
|
37 |
-
|
38 |
-
# Definir entradas
|
39 |
-
inputs = tf.keras.layers.Input(shape=input_shape)
|
40 |
-
|
41 |
-
# Aplicar transformada de Fourier (opcional)
|
42 |
-
# x = tf.keras.layers.Lambda(fourier_transform)(inputs)
|
43 |
-
x = inputs # Skip Fourier transform for now
|
44 |
-
|
45 |
-
# Encoder
|
46 |
-
x = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
|
47 |
-
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
|
48 |
-
x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
|
49 |
-
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
|
50 |
-
x = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x)
|
51 |
-
encoded = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
|
52 |
-
|
53 |
-
# Decoder
|
54 |
-
x = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same')(encoded)
|
55 |
-
x = tf.keras.layers.UpSampling2D((2, 2))(x)
|
56 |
-
x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
|
57 |
-
x = tf.keras.layers.UpSampling2D((2, 2))(x)
|
58 |
-
x = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
|
59 |
-
x = tf.keras.layers.UpSampling2D((2, 2))(x)
|
60 |
-
|
61 |
-
# Output
|
62 |
-
# x = tf.keras.layers.Lambda(inverse_fourier_transform)(x) # Skip inverse transform
|
63 |
-
outputs = tf.keras.layers.Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
|
64 |
-
|
65 |
-
# Crear modelo
|
66 |
-
model = tf.keras.models.Model(inputs, outputs)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
|
81 |
-
|
82 |
-
# Decoder
|
83 |
-
x = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
|
84 |
-
x = tf.keras.layers.UpSampling2D((2, 2))(x)
|
85 |
-
x = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
|
86 |
-
x = tf.keras.layers.UpSampling2D((2, 2))(x)
|
87 |
-
|
88 |
-
# Output
|
89 |
-
outputs = tf.keras.layers.Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
|
90 |
-
|
91 |
-
# Crear modelo
|
92 |
-
model = tf.keras.models.Model(inputs, outputs)
|
93 |
-
|
94 |
-
return model
|
95 |
|
96 |
# Funciones de preprocesamiento optimizadas
|
97 |
def degrade_image(image, downscale_factor=4):
|
@@ -138,10 +82,6 @@ def preprocess_image(image, std_dev=0.1, downscale_factor=4, target_size=(256, 2
|
|
138 |
|
139 |
return noisy_img
|
140 |
|
141 |
-
print("Crear modelo simplificado...")
|
142 |
-
model = build_simple_autoencoder()
|
143 |
-
print("Modelo creado correctamente")
|
144 |
-
|
145 |
# Funci贸n de denoising
|
146 |
def Denoiser(imagen):
|
147 |
"""Aplica el modelo autoencoder para eliminar ruido de la imagen."""
|
|
|
6 |
import time
|
7 |
import os
|
8 |
|
9 |
+
model_path = hf_hub_download(repo_id="Bmo411/DenoisingAutoencoder", filename="autoencoder_complete_model_Fourier.keras")
|
10 |
+
model = tf.keras.models.load_model(model_path)
|
11 |
+
|
12 |
+
from tensorflow.keras.saving import register_keras_serializable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
@register_keras_serializable()
|
15 |
def fourier_transform(x):
|
16 |
fourier = tf.signal.fft2d(tf.cast(x, tf.complex64))
|
17 |
fourier = tf.complex(tf.math.real(fourier), tf.math.imag(fourier))
|
18 |
fourier = tf.abs(fourier)
|
19 |
return tf.concat([tf.math.real(fourier), tf.math.imag(fourier)], axis=-1)
|
20 |
|
21 |
+
@register_keras_serializable()
|
22 |
def inverse_fourier_transform(x):
|
23 |
real_part, imag_part = tf.split(x, num_or_size_splits=2, axis=-1)
|
24 |
complex_fourier = tf.complex(real_part, imag_part)
|
25 |
return tf.abs(tf.signal.ifft2d(complex_fourier))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Configuraci贸n de GPU para TensorFlow
|
28 |
+
physical_devices = tf.config.list_physical_devices('GPU')
|
29 |
+
if physical_devices:
|
30 |
+
print("GPU disponible. Configurando...")
|
31 |
+
try:
|
32 |
+
for gpu in physical_devices:
|
33 |
+
tf.config.experimental.set_memory_growth(gpu, True)
|
34 |
+
print("Configuraci贸n de GPU completada")
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error en configuraci贸n de GPU: {e}")
|
37 |
+
else:
|
38 |
+
print("No se detect贸 GPU. El procesamiento ser谩 m谩s lento.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Funciones de preprocesamiento optimizadas
|
41 |
def degrade_image(image, downscale_factor=4):
|
|
|
82 |
|
83 |
return noisy_img
|
84 |
|
|
|
|
|
|
|
|
|
85 |
# Funci贸n de denoising
|
86 |
def Denoiser(imagen):
|
87 |
"""Aplica el modelo autoencoder para eliminar ruido de la imagen."""
|