import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration ) from scipy.io.wavfile import write import tempfile from dotenv import load_dotenv import spaces # Load environment variables (e.g., Hugging Face token) load_dotenv() hf_token = os.getenv("HF_TOKEN") # Globals for Lazy Loading llama_pipeline = None musicgen_model = None musicgen_processor = None # --------------------------------------------------------------------- # Load Llama 3 Model with Zero GPU (Lazy Loading) # --------------------------------------------------------------------- @spaces.GPU(duration=120) def load_llama_pipeline_zero_gpu(model_id: str, token: str): global llama_pipeline if llama_pipeline is None: try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", # Automatically handles GPU allocation trust_remote_code=True ) llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: return f"Error loading Llama pipeline: {e}" return llama_pipeline # --------------------------------------------------------------------- # Load MusicGen Model (Lazy Loading) # --------------------------------------------------------------------- @spaces.GPU(duration=120) def load_musicgen_model(): global musicgen_model, musicgen_processor if musicgen_model is None or musicgen_processor is None: try: musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") except Exception as e: return None, f"Error loading MusicGen model: {e}" return musicgen_model, musicgen_processor # --------------------------------------------------------------------- # Generate Radio Script # --------------------------------------------------------------------- def generate_script(user_input: str, llama_pipeline): try: system_prompt = ( "You are a top-tier radio imaging producer using Llama 3. " "Take the user's concept and craft a short, creative promo script." ) combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:" result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) return result[0]['generated_text'].split("Refined script:")[-1].strip() except Exception as e: return f"Error generating script: {e}" # --------------------------------------------------------------------- # Generate Audio # --------------------------------------------------------------------- @spaces.GPU(duration=120) def generate_audio(prompt: str, audio_length: int): mg_model, mg_processor = load_musicgen_model() if mg_model is None or isinstance(mg_processor, str): return mg_processor try: mg_model.to("cuda") # Move the model to GPU inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt") outputs = mg_model.generate(**inputs, max_new_tokens=audio_length) mg_model.to("cpu") # Return the model to CPU sr = mg_model.config.audio_encoder.sampling_rate audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav: write(temp_wav.name, sr, normalized_audio) return temp_wav.name except Exception as e: return f"Error generating audio: {e}" # --------------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------------- def radio_imaging_script(user_prompt, llama_model_id): llama_pipeline = load_llama_pipeline_zero_gpu(llama_model_id, hf_token) if isinstance(llama_pipeline, str): return llama_pipeline # Generate Script script = generate_script(user_prompt, llama_pipeline) return script def radio_imaging_audio(script, audio_length): return generate_audio(script, audio_length) # --------------------------------------------------------------------- # Interface # --------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)") # Script Generation Section with gr.Row(): with gr.Column(): gr.Markdown("## Step 1: Generate the Promo Script") user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.") llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B") generate_script_button = gr.Button("Generate Promo Script") script_output = gr.Textbox(label="Generated Script", interactive=False) generate_script_button.click( fn=radio_imaging_script, inputs=[user_prompt, llama_model_id], outputs=script_output ) # Audio Generation Section with gr.Row(): with gr.Column(): gr.Markdown("## Step 2: Generate the Sound") audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512) generate_audio_button = gr.Button("Generate Sound from Script") audio_output = gr.Audio(label="Generated Audio", type="filepath") generate_audio_button.click( fn=radio_imaging_audio, inputs=[script_output, audio_length], outputs=audio_output ) demo.launch(debug=True)