import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration ) from scipy.io.wavfile import write import tempfile from dotenv import load_dotenv import spaces load_dotenv() hf_token = os.getenv("HF_TOKEN") @spaces.GPU(duration=120) def load_llama_pipeline_zero_gpu(model_id: str, token: str): try: tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) return pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: return str(e) @spaces.GPU(duration=120) def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor): try: mg_model.to("cuda") inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt") outputs = mg_model.generate(**inputs, max_new_tokens=audio_length) mg_model.to("cpu") sr = mg_model.config.audio_encoder.sampling_rate audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav: write(temp_wav.name, sr, normalized_audio) return temp_wav.name except Exception as e: return f"Error generating audio: {e}" with gr.Blocks() as demo: gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)") user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.") llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B") hf_token = gr.Textbox(label="Hugging Face Token", type="password") audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512) generate_button = gr.Button("Generate Promo Script and Audio") script_output = gr.Textbox(label="Generated Script") audio_output = gr.Audio(label="Generated Audio", type="filepath") generate_button.click( fn=lambda prompt, model_id, token, length: (prompt, None), # Simplify for demo inputs=[user_prompt, llama_model_id, hf_token, audio_length], outputs=[script_output, audio_output] ) demo.launch(debug=True)