Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
pipeline, | |
AutoProcessor, | |
MusicgenForConditionalGeneration, | |
) | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from pydub.playback import play | |
import tempfile | |
from dotenv import load_dotenv | |
import spaces | |
# Load environment variables | |
load_dotenv() | |
hf_token = os.getenv("HF_TOKEN") | |
# --------------------------------------------------------------------- | |
# Script Generation Function | |
# --------------------------------------------------------------------- | |
def generate_script(user_prompt: str, model_id: str, token: str, duration: int): | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=token, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
system_prompt = ( | |
f"You are an expert radio imaging producer specializing in sound design and music. " | |
f"Based on the user's concept and the selected duration of {duration} seconds, craft a concise, engaging promo script. " | |
f"Ensure the script fits within the time limit and suggest a matching music style that complements the theme." | |
) | |
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:" | |
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) | |
generated_text = result[0]["generated_text"].split("Refined script and music suggestion:")[-1].strip() | |
script, music_suggestion = generated_text.split("Music Suggestion:") | |
return script.strip(), music_suggestion.strip() | |
except Exception as e: | |
return f"Error generating script: {e}", None | |
# --------------------------------------------------------------------- | |
# Voice-Over Generation Function | |
# --------------------------------------------------------------------- | |
def generate_voice(script: str, speaker: str): | |
try: | |
# Replace with your chosen TTS model | |
tts_model = "coqui/XTTS-v2" | |
processor = AutoProcessor.from_pretrained(tts_model) | |
model = AutoModelForCausalLM.from_pretrained(tts_model) | |
inputs = processor(script, return_tensors="pt") | |
speech = model.generate(**inputs) | |
output_path = f"{tempfile.gettempdir()}/generated_voice.wav" | |
write(output_path, 22050, speech.cpu().numpy()) | |
return output_path | |
except Exception as e: | |
return f"Error generating voice-over: {e}" | |
# --------------------------------------------------------------------- | |
# Music Generation Function | |
# --------------------------------------------------------------------- | |
def generate_music(prompt: str, audio_length: int): | |
try: | |
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") | |
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
musicgen_model.to(device) | |
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device) | |
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length) | |
audio_data = outputs[0, 0].cpu().numpy() | |
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") | |
output_path = f"{tempfile.gettempdir()}/generated_music.wav" | |
write(output_path, 44100, normalized_audio) | |
return output_path | |
except Exception as e: | |
return f"Error generating music: {e}" | |
# --------------------------------------------------------------------- | |
# Audio Blending Function with Ducking | |
# --------------------------------------------------------------------- | |
def blend_audio(voice_path: str, music_path: str, ducking: bool): | |
try: | |
voice = AudioSegment.from_file(voice_path) | |
music = AudioSegment.from_file(music_path) | |
if ducking: | |
music = music - 10 # Lower music volume for ducking | |
combined = music.overlay(voice) | |
output_path = f"{tempfile.gettempdir()}/final_promo.wav" | |
combined.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
return f"Error blending audio: {e}" | |
# --------------------------------------------------------------------- | |
# Gradio Interface | |
# --------------------------------------------------------------------- | |
def process_all(user_prompt, llama_model_id, duration, audio_length, speaker, ducking): | |
script, music_suggestion = generate_script(user_prompt, llama_model_id, hf_token, duration) | |
if "Error" in script: | |
return script, None | |
voice_path = generate_voice(script, speaker) | |
if "Error" in voice_path: | |
return voice_path, None | |
music_path = generate_music(music_suggestion, audio_length) | |
if "Error" in music_path: | |
return music_path, None | |
final_audio = blend_audio(voice_path, music_path, ducking) | |
return f"Script:\n{script}\n\nMusic Suggestion:\n{music_suggestion}", final_audio | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🎧 AI Promo Studio with Script, Voice, Music, and Mixing 🚀 | |
Generate fully mixed promos effortlessly with AI-driven tools for radio and media! | |
""") | |
with gr.Row(): | |
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.") | |
llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct") | |
duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30) | |
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512) | |
speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.") | |
ducking = gr.Checkbox(label="Enable Ducking", value=True) | |
generate_button = gr.Button("Generate Full Promo") | |
script_output = gr.Textbox(label="Generated Script and Music Suggestion") | |
audio_output = gr.Audio(label="Final Promo Audio", type="filepath") | |
generate_button.click( | |
fn=process_all, | |
inputs=[user_prompt, llama_model_id, duration, audio_length, speaker, ducking], | |
outputs=[script_output, audio_output], | |
) | |
gr.Markdown(""" | |
<hr> | |
<p style="text-align: center; font-size: 0.9em;"> | |
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a> | |
</p> | |
""") | |
demo.launch(debug=True) | |