Spaces:
Sleeping
Sleeping
File size: 12,829 Bytes
17d10a7 a15d204 d448add db46bfb 1c1b50f db46bfb 1c1b50f db8ba25 db46bfb cf3593c d9bf0f0 b950350 6aba99a 3168a3e 019c404 3168a3e 464b686 cf3593c a92463e 2de59b3 464b686 dfa5d3e 464b686 3168a3e 2de59b3 464b686 b950350 464b686 2de59b3 a38649c 464b686 b950350 559ca26 464b686 559ca26 dfa5d3e 464b686 2de59b3 464b686 17d10a7 464b686 217c4b5 464b686 1808e7a 464b686 217c4b5 cf3593c 464b686 16184b2 464b686 ecc69bf 559ca26 464b686 559ca26 a92463e 464b686 559ca26 464b686 559ca26 d9bf0f0 464b686 d9bf0f0 464b686 b950350 464b686 ecc69bf 464b686 35e8eba 464b686 35e8eba 464b686 35e8eba 464b686 8c25665 464b686 b950350 2de59b3 b950350 1d543ba 2de59b3 1d543ba 3fe530b 464b686 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS
# -------------------------------
# Configuration
# -------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
MODEL_CONFIG = {
"llama_models": {
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct",
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
"Phi-3-mini": "microsoft/Phi-3-mini-4k-instruct"
},
"tts_models": {
"Standard English": "tts_models/en/ljspeech/tacotron2-DDC",
"High Quality": "tts_models/en/ljspeech/vits",
"Fast Inference": "tts_models/en/sam/tacotron-DDC"
}
}
# -------------------------------
# Model Manager
# -------------------------------
class ModelManager:
def __init__(self):
self.llama_pipelines = {}
self.musicgen_models = {}
self.tts_models = {}
def get_llama_pipeline(self, model_id, token):
if model_id not in self.llama_pipelines:
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2"
)
self.llama_pipelines[model_id] = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto"
)
return self.llama_pipelines[model_id]
def get_musicgen_model(self, model_key="facebook/musicgen-large"):
if model_key not in self.musicgen_models:
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
self.musicgen_models[model_key] = (model, processor)
return self.musicgen_models[model_key]
def get_tts_model(self, model_name):
if model_name not in self.tts_models:
self.tts_models[model_name] = TTS(model_name)
return self.tts_models[model_name]
model_manager = ModelManager()
# -------------------------------
# Core Functions
# -------------------------------
@spaces.GPU(duration=120)
def generate_script(user_prompt, model_id, duration, temperature=0.7, max_tokens=512):
try:
text_pipeline = model_manager.get_llama_pipeline(model_id, HF_TOKEN)
system_prompt = f"""You are an AI audio production assistant. Create content for a {duration}-second promo:
1. Voice Script: [Clear, engaging narration]
2. Sound Design: [3-5 specific sound effects]
3. Music: [Genre, tempo, mood suggestions]
Keep sections concise and production-ready."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
response = text_pipeline(
messages,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=0.95,
eos_token_id=text_pipeline.tokenizer.eos_token_id
)
return parse_generated_content(response[0]['generated_text'][-1]['content'])
except Exception as e:
return f"Error: {str(e)}", "", ""
def parse_generated_content(text):
sections = {
"Voice Script": "",
"Sound Design": "",
"Music": ""
}
current_section = None
for line in text.split('\n'):
line = line.strip()
if "Voice Script:" in line:
current_section = "Voice Script"
line = line.replace("Voice Script:", "").strip()
elif "Sound Design:" in line:
current_section = "Sound Design"
line = line.replace("Sound Design:", "").strip()
elif "Music:" in line:
current_section = "Music"
line = line.replace("Music:", "").strip()
if current_section and line:
sections[current_section] += line + "\n"
return sections["Voice Script"].strip(), sections["Sound Design"].strip(), sections["Music"].strip()
@spaces.GPU(duration=100)
def generate_voice(script, tts_model, speed=1.0):
try:
if not script.strip():
raise ValueError("Empty script")
tts = model_manager.get_tts_model(tts_model)
output_path = os.path.join(tempfile.gettempdir(), "enhanced_voice.wav")
tts.tts_to_file(
text=script,
file_path=output_path,
speed=speed
)
return output_path
except Exception as e:
return f"Error: {str(e)}"
@spaces.GPU(duration=150)
def generate_music(prompt, duration_sec=30, temperature=1.0, guidance_scale=3.0):
try:
model, processor = model_manager.get_musicgen_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(
text=[prompt],
padding=True,
return_tensors="pt",
).to(device)
audio_values = model.generate(
**inputs,
max_new_tokens=int(duration_sec * 50),
temperature=temperature,
guidance_scale=guidance_scale,
do_sample=True
)
output_path = os.path.join(tempfile.gettempdir(), "enhanced_music.wav")
write(output_path, 32000, audio_values[0, 0].cpu().numpy())
return output_path
except Exception as e:
return f"Error: {str(e)}"
def blend_audio(voice_path, music_path, ducking=True, duck_level=10, crossfade=500):
try:
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
if len(music) < len(voice):
loops = (len(voice) // len(music)) + 1
music = music * loops
music = music[:len(voice)].fade_out(crossfade)
if ducking:
ducked_music = music - duck_level
mixed = ducked_music.overlay(voice.fade_in(crossfade))
else:
mixed = music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "enhanced_mix.wav")
mixed.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error: {str(e)}"
# -------------------------------
# Gradio Interface
# -------------------------------
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="teal",
).set(
body_text_color_dark='#FFFFFF',
background_fill_primary_dark='#1F1F1F'
)
with gr.Blocks(theme=theme, title="AI Audio Studio Pro") as demo:
gr.Markdown("""
# ποΈ AI Audio Studio Pro
*Next-generation audio production powered by AI*
""")
with gr.Tabs():
with gr.Tab("π― Concept Development"):
with gr.Row():
with gr.Column(scale=2):
concept_input = gr.Textbox(
label="Your Concept",
placeholder="Describe your audio project...",
lines=3,
max_lines=6
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
model_selector = gr.Dropdown(
choices=list(MODEL_CONFIG["llama_models"].values()),
label="AI Model",
value=MODEL_CONFIG["llama_models"]["Meta-Llama-3-8B"]
)
duration_slider = gr.Slider(15, 120, value=30, step=15, label="Duration (seconds)")
with gr.Row():
temp_slider = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Creativity")
token_slider = gr.Slider(128, 1024, value=512, step=128, label="Max Length")
generate_btn = gr.Button("β¨ Generate Concept", variant="primary")
with gr.Column(scale=1):
script_output = gr.Textbox(label="Voice Script", interactive=True)
sound_output = gr.Textbox(label="Sound Design", interactive=True)
music_output = gr.Textbox(label="Music Suggestions", interactive=True)
generate_btn.click(
generate_script,
inputs=[concept_input, model_selector, duration_slider, temp_slider, token_slider],
outputs=[script_output, sound_output, music_output]
)
with gr.Tab("π£οΈ Voice Production"):
with gr.Row():
with gr.Column():
tts_model = gr.Dropdown(
choices=list(MODEL_CONFIG["tts_models"].values()),
label="Voice Model",
value=MODEL_CONFIG["tts_models"]["Standard English"]
)
speed_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Speaking Rate")
voice_btn = gr.Button("ποΈ Generate Voiceover", variant="primary")
with gr.Column():
voice_preview = gr.Audio(label="Preview", interactive=False)
voice_btn.click(
generate_voice,
inputs=[script_output, tts_model, speed_slider],
outputs=voice_preview
)
with gr.Tab("πΆ Music Production"):
with gr.Row():
with gr.Column():
with gr.Accordion("Music Parameters", open=True):
music_duration = gr.Slider(10, 120, value=30, label="Duration (seconds)")
music_temp = gr.Slider(0.1, 2.0, value=1.0, label="Creativity")
guidance_scale = gr.Slider(1.0, 5.0, value=3.0, label="Focus")
music_btn = gr.Button("π΅ Generate Music", variant="primary")
with gr.Column():
music_preview = gr.Audio(label="Preview", interactive=False)
music_btn.click(
generate_music,
inputs=[music_output, music_duration, music_temp, guidance_scale],
outputs=music_preview
)
with gr.Tab("π Final Mix"):
with gr.Row():
with gr.Column():
ducking_toggle = gr.Checkbox(value=True, label="Enable Voice Ducking")
duck_level = gr.Slider(0, 30, value=12, label="Ducking Strength (dB)")
crossfade_time = gr.Slider(0, 2000, value=500, label="Crossfade (ms)")
mix_btn = gr.Button("π Create Final Mix", variant="primary")
with gr.Column():
final_mix = gr.Audio(label="Master Output", interactive=False)
mix_btn.click(
blend_audio,
inputs=[voice_preview, music_preview, ducking_toggle, duck_level, crossfade_time],
outputs=final_mix
)
with gr.Accordion("π Example Prompts", open=False):
gr.Examples(
examples=[
["A 30-second tech podcast intro with futuristic sounds"],
["A 15-second radio ad for a coffee shop with morning vibes"],
["A 60-second documentary trailer with epic orchestral music"]
],
inputs=concept_input
)
with gr.Row():
gr.Markdown("### System Resources")
gpu_status = gr.Textbox(label="GPU Utilization", interactive=False)
ram_status = gr.Textbox(label="RAM Usage", interactive=False)
# Custom Footer
gr.Markdown("""
<hr>
<p style="text-align: center; font-size: 0.9em;">
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
</p>
""")
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
</a>
""")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |