File size: 12,829 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
d9bf0f0
b950350
6aba99a
3168a3e
019c404
3168a3e
464b686
 
 
cf3593c
a92463e
2de59b3
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa5d3e
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3168a3e
2de59b3
464b686
 
b950350
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de59b3
a38649c
464b686
b950350
559ca26
464b686
 
 
 
 
 
 
 
 
 
559ca26
dfa5d3e
464b686
2de59b3
464b686
 
17d10a7
464b686
217c4b5
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
1808e7a
464b686
 
217c4b5
cf3593c
464b686
16184b2
464b686
ecc69bf
559ca26
 
464b686
 
 
 
 
 
 
559ca26
a92463e
464b686
559ca26
464b686
 
 
 
559ca26
d9bf0f0
464b686
d9bf0f0
464b686
b950350
464b686
 
 
 
 
 
 
 
ecc69bf
464b686
 
 
 
 
 
35e8eba
464b686
35e8eba
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e8eba
 
464b686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c25665
464b686
b950350
2de59b3
 
 
 
b950350
1d543ba
 
2de59b3
 
 
1d543ba
3fe530b
464b686
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS

# -------------------------------
# Configuration
# -------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

MODEL_CONFIG = {
    "llama_models": {
        "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct",
        "Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
        "Phi-3-mini": "microsoft/Phi-3-mini-4k-instruct"
    },
    "tts_models": {
        "Standard English": "tts_models/en/ljspeech/tacotron2-DDC",
        "High Quality": "tts_models/en/ljspeech/vits",
        "Fast Inference": "tts_models/en/sam/tacotron-DDC"
    }
}

# -------------------------------
# Model Manager
# -------------------------------
class ModelManager:
    def __init__(self):
        self.llama_pipelines = {}
        self.musicgen_models = {}
        self.tts_models = {}

    def get_llama_pipeline(self, model_id, token):
        if model_id not in self.llama_pipelines:
            tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
            model = AutoModelForCausalLM.from_pretrained(
                model_id,
                token=token,
                torch_dtype=torch.float16,
                device_map="auto",
                attn_implementation="flash_attention_2"
            )
            self.llama_pipelines[model_id] = pipeline(
                "text-generation",
                model=model,
                tokenizer=tokenizer,
                device_map="auto"
            )
        return self.llama_pipelines[model_id]

    def get_musicgen_model(self, model_key="facebook/musicgen-large"):
        if model_key not in self.musicgen_models:
            model = MusicgenForConditionalGeneration.from_pretrained(model_key)
            processor = AutoProcessor.from_pretrained(model_key)
            device = "cuda" if torch.cuda.is_available() else "cpu"
            model.to(device)
            self.musicgen_models[model_key] = (model, processor)
        return self.musicgen_models[model_key]

    def get_tts_model(self, model_name):
        if model_name not in self.tts_models:
            self.tts_models[model_name] = TTS(model_name)
        return self.tts_models[model_name]

model_manager = ModelManager()

# -------------------------------
# Core Functions
# -------------------------------
@spaces.GPU(duration=120)
def generate_script(user_prompt, model_id, duration, temperature=0.7, max_tokens=512):
    try:
        text_pipeline = model_manager.get_llama_pipeline(model_id, HF_TOKEN)
        
        system_prompt = f"""You are an AI audio production assistant. Create content for a {duration}-second promo:
1. Voice Script: [Clear, engaging narration]
2. Sound Design: [3-5 specific sound effects]
3. Music: [Genre, tempo, mood suggestions]

Keep sections concise and production-ready."""

        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]

        response = text_pipeline(
            messages,
            max_new_tokens=max_tokens,
            temperature=temperature,
            do_sample=True,
            top_p=0.95,
            eos_token_id=text_pipeline.tokenizer.eos_token_id
        )

        return parse_generated_content(response[0]['generated_text'][-1]['content'])
    
    except Exception as e:
        return f"Error: {str(e)}", "", ""

def parse_generated_content(text):
    sections = {
        "Voice Script": "",
        "Sound Design": "",
        "Music": ""
    }
    current_section = None
    
    for line in text.split('\n'):
        line = line.strip()
        if "Voice Script:" in line:
            current_section = "Voice Script"
            line = line.replace("Voice Script:", "").strip()
        elif "Sound Design:" in line:
            current_section = "Sound Design"
            line = line.replace("Sound Design:", "").strip()
        elif "Music:" in line:
            current_section = "Music"
            line = line.replace("Music:", "").strip()
        
        if current_section and line:
            sections[current_section] += line + "\n"
    
    return sections["Voice Script"].strip(), sections["Sound Design"].strip(), sections["Music"].strip()

@spaces.GPU(duration=100)
def generate_voice(script, tts_model, speed=1.0):
    try:
        if not script.strip():
            raise ValueError("Empty script")
            
        tts = model_manager.get_tts_model(tts_model)
        output_path = os.path.join(tempfile.gettempdir(), "enhanced_voice.wav")
        
        tts.tts_to_file(
            text=script,
            file_path=output_path,
            speed=speed
        )
        return output_path
    except Exception as e:
        return f"Error: {str(e)}"

@spaces.GPU(duration=150)
def generate_music(prompt, duration_sec=30, temperature=1.0, guidance_scale=3.0):
    try:
        model, processor = model_manager.get_musicgen_model()
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        inputs = processor(
            text=[prompt],
            padding=True,
            return_tensors="pt",
        ).to(device)

        audio_values = model.generate(
            **inputs,
            max_new_tokens=int(duration_sec * 50),
            temperature=temperature,
            guidance_scale=guidance_scale,
            do_sample=True
        )

        output_path = os.path.join(tempfile.gettempdir(), "enhanced_music.wav")
        write(output_path, 32000, audio_values[0, 0].cpu().numpy())
        return output_path
    except Exception as e:
        return f"Error: {str(e)}"

def blend_audio(voice_path, music_path, ducking=True, duck_level=10, crossfade=500):
    try:
        voice = AudioSegment.from_wav(voice_path)
        music = AudioSegment.from_wav(music_path)
        
        if len(music) < len(voice):
            loops = (len(voice) // len(music)) + 1
            music = music * loops
        
        music = music[:len(voice)].fade_out(crossfade)
        
        if ducking:
            ducked_music = music - duck_level
            mixed = ducked_music.overlay(voice.fade_in(crossfade))
        else:
            mixed = music.overlay(voice)
            
        output_path = os.path.join(tempfile.gettempdir(), "enhanced_mix.wav")
        mixed.export(output_path, format="wav")
        return output_path
    except Exception as e:
        return f"Error: {str(e)}"

# -------------------------------
# Gradio Interface
# -------------------------------
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="teal",
).set(
    body_text_color_dark='#FFFFFF',
    background_fill_primary_dark='#1F1F1F'
)

with gr.Blocks(theme=theme, title="AI Audio Studio Pro") as demo:
    gr.Markdown("""
    # πŸŽ™οΈ AI Audio Studio Pro
    *Next-generation audio production powered by AI*
    """)
    
    with gr.Tabs():
        with gr.Tab("🎯 Concept Development"):
            with gr.Row():
                with gr.Column(scale=2):
                    concept_input = gr.Textbox(
                        label="Your Concept",
                        placeholder="Describe your audio project...",
                        lines=3,
                        max_lines=6
                    )
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            model_selector = gr.Dropdown(
                                choices=list(MODEL_CONFIG["llama_models"].values()),
                                label="AI Model",
                                value=MODEL_CONFIG["llama_models"]["Meta-Llama-3-8B"]
                            )
                            duration_slider = gr.Slider(15, 120, value=30, step=15, label="Duration (seconds)")
                        with gr.Row():
                            temp_slider = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Creativity")
                            token_slider = gr.Slider(128, 1024, value=512, step=128, label="Max Length")
                    
                    generate_btn = gr.Button("✨ Generate Concept", variant="primary")
                
                with gr.Column(scale=1):
                    script_output = gr.Textbox(label="Voice Script", interactive=True)
                    sound_output = gr.Textbox(label="Sound Design", interactive=True)
                    music_output = gr.Textbox(label="Music Suggestions", interactive=True)
            
            generate_btn.click(
                generate_script,
                inputs=[concept_input, model_selector, duration_slider, temp_slider, token_slider],
                outputs=[script_output, sound_output, music_output]
            )

        with gr.Tab("πŸ—£οΈ Voice Production"):
            with gr.Row():
                with gr.Column():
                    tts_model = gr.Dropdown(
                        choices=list(MODEL_CONFIG["tts_models"].values()),
                        label="Voice Model",
                        value=MODEL_CONFIG["tts_models"]["Standard English"]
                    )
                    speed_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Speaking Rate")
                    voice_btn = gr.Button("πŸŽ™οΈ Generate Voiceover", variant="primary")
                with gr.Column():
                    voice_preview = gr.Audio(label="Preview", interactive=False)
                    voice_btn.click(
                        generate_voice,
                        inputs=[script_output, tts_model, speed_slider],
                        outputs=voice_preview
                    )

        with gr.Tab("🎢 Music Production"):
            with gr.Row():
                with gr.Column():
                    with gr.Accordion("Music Parameters", open=True):
                        music_duration = gr.Slider(10, 120, value=30, label="Duration (seconds)")
                        music_temp = gr.Slider(0.1, 2.0, value=1.0, label="Creativity")
                        guidance_scale = gr.Slider(1.0, 5.0, value=3.0, label="Focus")
                    music_btn = gr.Button("🎡 Generate Music", variant="primary")
                with gr.Column():
                    music_preview = gr.Audio(label="Preview", interactive=False)
                    music_btn.click(
                        generate_music,
                        inputs=[music_output, music_duration, music_temp, guidance_scale],
                        outputs=music_preview
                    )

        with gr.Tab("πŸ”Š Final Mix"):
            with gr.Row():
                with gr.Column():
                    ducking_toggle = gr.Checkbox(value=True, label="Enable Voice Ducking")
                    duck_level = gr.Slider(0, 30, value=12, label="Ducking Strength (dB)")
                    crossfade_time = gr.Slider(0, 2000, value=500, label="Crossfade (ms)")
                    mix_btn = gr.Button("πŸš€ Create Final Mix", variant="primary")
                with gr.Column():
                    final_mix = gr.Audio(label="Master Output", interactive=False)
                    mix_btn.click(
                        blend_audio,
                        inputs=[voice_preview, music_preview, ducking_toggle, duck_level, crossfade_time],
                        outputs=final_mix
                    )
    
    with gr.Accordion("πŸ“š Example Prompts", open=False):
        gr.Examples(
            examples=[
                ["A 30-second tech podcast intro with futuristic sounds"],
                ["A 15-second radio ad for a coffee shop with morning vibes"],
                ["A 60-second documentary trailer with epic orchestral music"]
            ],
            inputs=concept_input
        )
    
    with gr.Row():
        gr.Markdown("### System Resources")
        gpu_status = gr.Textbox(label="GPU Utilization", interactive=False)
        ram_status = gr.Textbox(label="RAM Usage", interactive=False)

    # Custom Footer
    gr.Markdown("""
    <hr>
    <p style="text-align: center; font-size: 0.9em;">
        Created with ❀️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
    </p>
    """)
    
    gr.HTML("""
    <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
        <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
    </a>
    """)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)