File size: 25,742 Bytes
79bcb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import streamlit as st
import pandas as pd
import time
import torch
import os
from models import MedicalConsultationPipeline
from utils import (
    highlight_text_with_entities,
    format_duration,
    create_risk_gauge,
    create_risk_probability_chart,
    save_consultation,
    load_consultation_history,
    init_session_state,
    RISK_COLORS
)

# Page configuration
st.set_page_config(
    page_title="AI Medical Consultation",
    page_icon="🩺",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
def load_css():
    with open("style.css", "r") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

# 检查本地是否有fine-tuned的T5模型
def find_fine_tuned_model():
    possible_local_paths = [
        "./finetuned_t5-small",  # 添加用户提供的微调模型路径
        "./t5-small-medical-recommendation",
        "./models/t5-small-medical-recommendation",
        "./fine_tuned_models/t5-small",
        "./output",
        "./fine_tuning_output"
    ]
    
    for path in possible_local_paths:
        if os.path.exists(path):
            return path
    
    return "t5-small"  # 如果没有找到,返回基础模型

# Initialize session state
init_session_state()

# Apply custom CSS
load_css()

# Sidebar for settings and history
with st.sidebar:
    st.image("https://img.icons8.com/fluency/96/000000/hospital-3.png", width=80)
    st.title("AI Medical Assistant")
    
    st.markdown("---")
    with st.expander("⚙️ Settings", expanded=False):
        # Model settings
        st.subheader("Model Settings")
        symptom_model = st.selectbox(
            "Symptom Extraction Model",
            ["dmis-lab/biobert-v1.1"],
            index=0,
            disabled=st.session_state.loaded_models  # Disable after models are loaded
        )
        
        risk_model = st.selectbox(
            "Risk Classification Model",
            ["microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract"],
            index=0,
            disabled=st.session_state.loaded_models  # Disable after models are loaded
        )
        
        # 查找可用的t5模型
        available_t5_model = find_fine_tuned_model()
        recommendation_model_options = []
        
        # 总是添加基础模型
        recommendation_model_options.append("t5-small (base model)")
        
        # 如果找到了fine-tuned模型,添加到选项中
        if available_t5_model != "t5-small":
            recommendation_model_options.insert(0, f"{available_t5_model} (fine-tuned)")
        
        recommendation_model_label = st.selectbox(
            "Recommendation Model",
            recommendation_model_options,
            index=0,
            disabled=st.session_state.loaded_models  # Disable after models are loaded
        )
        
        # 提取实际的模型路径
        if "(fine-tuned)" in recommendation_model_label:
            recommendation_model = available_t5_model
        else:
            recommendation_model = "t5-small"
        
        # Device selection
        device = st.radio(
            "Compute Device",
            ["CPU", "GPU (if available)"],
            index=1 if torch.cuda.is_available() else 0,
            disabled=st.session_state.loaded_models  # Disable after models are loaded
        )
        device = "cuda" if device == "GPU (if available)" and torch.cuda.is_available() else "cpu"
        
        if st.session_state.loaded_models:
            st.info("注意:设置已锁定,因为模型已加载。要更改设置,请刷新页面。")
        
    # Consultation history section
    st.markdown("---")
    st.subheader("📋 Consultation History")
    
    # Load consultation history
    if st.button("Refresh History"):
        st.session_state.consultation_history = load_consultation_history()
        st.success("History refreshed!")
    
    # If history is not already loaded, load it
    if not st.session_state.consultation_history:
        st.session_state.consultation_history = load_consultation_history()
    
    # Display history items
    if not st.session_state.consultation_history:
        st.info("No previous consultations found.")
    else:
        for i, consultation in enumerate(st.session_state.consultation_history[:10]):  # Show only the 10 most recent
            timestamp = pd.to_datetime(consultation.get("timestamp", "")).strftime("%Y-%m-%d %H:%M")
            risk_level = consultation.get("risk", {}).get("risk_level", "Unknown")
            risk_color = RISK_COLORS.get(risk_level, "#6c757d")
            
            # Create a clickable history item
            history_item = f"""

            <div class='history-item' onclick=''>

                <strong>Patient Input:</strong> {consultation.get('input_text', '')[:50]}...<br>

                <strong>Time:</strong> {timestamp}<br>

                <strong>Risk Level:</strong> <span style='color:{risk_color};'>{risk_level}</span>

            </div>

            """
            clicked = st.markdown(history_item, unsafe_allow_html=True)
            
            # If clicked, set this consultation as the current result
            if clicked:
                st.session_state.current_result = consultation

# Main app layout
st.markdown("<h1 class='main-header'>AI-Powered Medical Consultation</h1>", unsafe_allow_html=True)

# Introduction row
col1, col2 = st.columns([2, 1])
with col1:
    st.markdown("""

    <div class="card">

        <h2 class="card-header">How it Works</h2>

        <p>This AI-powered medical consultation system helps you understand your symptoms and provides guidance on next steps.</p>

        <p><strong>Simply describe your symptoms</strong> in natural language and the system will:</p>

        <ol>

            <li>Extract key symptoms and duration information</li>

            <li>Assess your risk level</li>

            <li>Generate personalized medical recommendations</li>

        </ol>

        <p><em>Note: This system is for informational purposes only and does not replace professional medical advice.</em></p>

    </div>

    """, unsafe_allow_html=True)

with col2:
    st.markdown("""

    <div class="card">

        <h2 class="card-header">Example Inputs</h2>

        <ul>

            <li>"I've been experiencing severe headaches and dizziness for about 2 weeks. Sometimes I also feel nauseous."</li>

            <li>"My child has had a high fever of 39°C since yesterday and is coughing a lot."</li>

            <li>"I've noticed a persistent rash on my arm for the past 3 days, it's itchy and slightly swollen."</li>

        </ul>

    </div>

    """, unsafe_allow_html=True)

# 显示当前使用的模型信息
model_info = f"""

<div class="card">

    <h2 class="card-header">当前模型配置</h2>

    <ul>

        <li><strong>症状抽取模型:</strong> {symptom_model}</li>

        <li><strong>风险分类模型:</strong> {risk_model}</li>

        <li><strong>推荐生成模型:</strong> {recommendation_model} {"(微调模型)" if recommendation_model != "t5-small" else "(基础模型)"}</li>

        <li><strong>计算设备:</strong> {device.upper()}</li>

    </ul>

</div>

"""
st.markdown(model_info, unsafe_allow_html=True)

# Load models on first run or when settings change
@st.cache_resource
def load_pipeline(_symptom_model, _risk_model, _recommendation_model, _device):
    return MedicalConsultationPipeline(
        symptom_model=_symptom_model,
        risk_model=_risk_model,
        recommendation_model=_recommendation_model,
        device=_device
    )

# Only load models if they haven't been loaded yet
if not st.session_state.loaded_models:
    try:
        with st.spinner("Loading AI models... This may take a minute..."):
            pipeline = load_pipeline(symptom_model, risk_model, recommendation_model, device)
            st.session_state.pipeline = pipeline
            st.session_state.loaded_models = True
            st.success("✅ Models loaded successfully!")
    except Exception as e:
        st.error(f"Error loading models: {str(e)}")
else:
    pipeline = st.session_state.pipeline

# Input section
st.markdown("<h2 class='subheader'>Describe Your Symptoms</h2>", unsafe_allow_html=True)

# Text input for patient description
patient_input = st.text_area(
    "Please describe your symptoms, including when they started and any other relevant information:",
    height=150,
    placeholder="Example: I've been experiencing severe headaches and dizziness for about 2 weeks. Sometimes I also feel nauseous."
)

# Process button
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
    process_button = st.button("Analyze Symptoms", type="primary", use_container_width=True)

# Handle processing
if process_button and patient_input and not st.session_state.is_processing:
    st.session_state.is_processing = True
    
    # Process the input
    with st.spinner("Analyzing your symptoms..."):
        try:
            # Process through pipeline
            start_time = time.time()
            result = pipeline.process(patient_input)
            elapsed_time = time.time() - start_time
            
            # Save result to session state
            st.session_state.current_result = result
            
            # Save consultation to history
            save_consultation(result)
            
            # Success message
            st.success(f"Analysis completed in {elapsed_time:.2f} seconds!")
        except Exception as e:
            st.error(f"Error processing your input: {str(e)}")
    
    st.session_state.is_processing = False

# Results section - show if there's a current result
if st.session_state.current_result:
    result = st.session_state.current_result
    
    st.markdown("<h2 class='subheader'>Consultation Results</h2>", unsafe_allow_html=True)
    
    # Create tabs for different sections of the results
    tabs = st.tabs(["Overview", "Symptoms Analysis", "Risk Assessment", "Recommendations"])
    
    # Overview tab - summary of all results
    with tabs[0]:
        col1, col2 = st.columns([3, 2])
        
        with col1:
            st.markdown("""

            <div class="card">

                <h3 class="card-header">Patient Description</h3>

            """, unsafe_allow_html=True)
            
            # Highlight symptoms and duration in the text
            highlighted_text = highlight_text_with_entities(
                result.get("input_text", ""),
                result.get("extraction", {}).get("symptoms", [])
            )
            st.markdown(f"<p>{highlighted_text}</p>", unsafe_allow_html=True)
            
            st.markdown("</div>", unsafe_allow_html=True)
            
            # Recommendations card
            st.markdown("""

            <div class="card">

                <h3 class="card-header">Medical Recommendations</h3>

                <div class="recommendation-container">

            """, unsafe_allow_html=True)
            
            recommendation = result.get("recommendation", "No recommendations available.")
            st.markdown(f"<p>{recommendation}</p>", unsafe_allow_html=True)
            
            st.markdown("""

                </div>

                <p><em>Note: This is AI-generated guidance and should not replace professional medical advice.</em></p>

            </div>

            """, unsafe_allow_html=True)
        
        with col2:
            # Risk level card
            risk_level = result.get("risk", {}).get("risk_level", "Unknown")
            confidence = result.get("risk", {}).get("confidence", 0.0)
            
            st.markdown(f"""

            <div class="card">

                <h3 class="card-header">Risk Assessment</h3>

                <div style="text-align: center;">

                    <span class="risk-{risk_level.lower()}" style="font-size: 1.8rem;">{risk_level}</span>

                    <p>Confidence: {confidence:.1%}</p>

                </div>

            """, unsafe_allow_html=True)
            
            # Add risk gauge
            risk_gauge = create_risk_gauge(risk_level, confidence)
            st.plotly_chart(risk_gauge, use_container_width=True, key="overview_risk_gauge")
            
            st.markdown("</div>", unsafe_allow_html=True)
            
            # Extracted symptoms summary
            st.markdown("""

            <div class="card">

                <h3 class="card-header">Key Findings</h3>

            """, unsafe_allow_html=True)
            
            symptoms = result.get("extraction", {}).get("symptoms", [])
            duration = result.get("extraction", {}).get("duration", [])
            
            if symptoms:
                st.markdown("<strong>Identified Symptoms:</strong>", unsafe_allow_html=True)
                for symptom in symptoms:
                    st.markdown(f"• {symptom['text']} ({symptom['score']:.1%} confidence)", unsafe_allow_html=True)
            else:
                st.info("No specific symptoms identified")
            
            st.markdown("<br><strong>Duration Information:</strong>", unsafe_allow_html=True)
            st.markdown(f"<p>{format_duration(duration)}</p>", unsafe_allow_html=True)
            
            st.markdown("</div>", unsafe_allow_html=True)
    
    # Symptoms Analysis tab
    with tabs[1]:
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Detailed Symptom Analysis</h3>

        """, unsafe_allow_html=True)
        
        symptoms = result.get("extraction", {}).get("symptoms", [])
        
        if symptoms:
            # Create a DataFrame for symptoms
            symptom_df = pd.DataFrame([
                {
                    "Symptom": s["text"],
                    "Confidence": s["score"], 
                    "Start Position": s["start"],
                    "End Position": s["end"]
                } for s in symptoms
            ])
            
            # Sort by confidence
            symptom_df = symptom_df.sort_values("Confidence", ascending=False)
            
            # Display DataFrame
            st.dataframe(symptom_df, use_container_width=True)
            
            # Bar chart of symptoms by confidence
            if len(symptoms) > 1:
                st.markdown("<h4>Symptom Confidence Scores</h4>", unsafe_allow_html=True)
                chart_data = symptom_df[["Symptom", "Confidence"]].set_index("Symptom")
                st.bar_chart(chart_data, use_container_width=True)
        else:
            st.info("No specific symptoms were detected in the input text.")
        
        st.markdown("</div>", unsafe_allow_html=True)
        
        # Duration information card
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Duration Analysis</h3>

        """, unsafe_allow_html=True)
        
        duration = result.get("extraction", {}).get("duration", [])
        
        if duration:
            # Create a DataFrame for duration information
            duration_df = pd.DataFrame([
                {
                    "Duration": d["text"],
                    "Start Position": d["start"],
                    "End Position": d["end"]
                } for d in duration
            ])
            
            # Display DataFrame
            st.dataframe(duration_df, use_container_width=True)
            
            # Highlight duration in text
            st.markdown("<h4>Original Text with Duration Highlighted</h4>", unsafe_allow_html=True)
            
            # Highlight duration in a different color
            duration_text = result.get("input_text", "")
            sorted_duration = sorted(duration, key=lambda x: x['start'], reverse=True)
            
            for d in sorted_duration:
                start = d['start']
                end = d['end']
                highlight = f"<span class='duration-highlight'>{duration_text[start:end]}</span>"
                duration_text = duration_text[:start] + highlight + duration_text[end:]
            
            st.markdown(f"<p>{duration_text}</p>", unsafe_allow_html=True)
        else:
            st.info("No specific duration information was detected in the input text.")
        
        st.markdown("</div>", unsafe_allow_html=True)
    
    # Risk Assessment tab
    with tabs[2]:
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Risk Level Assessment</h3>

        """, unsafe_allow_html=True)
        
        risk_data = result.get("risk", {})
        risk_level = risk_data.get("risk_level", "Unknown")
        confidence = risk_data.get("confidence", 0.0)
        probabilities = risk_data.get("all_probabilities", {})
        
        col1, col2 = st.columns(2)
        
        with col1:
            # Display risk gauge
            risk_gauge = create_risk_gauge(risk_level, confidence)
            st.plotly_chart(risk_gauge, use_container_width=True, key="risk_assessment_gauge")
        
        with col2:
            # Display probability distribution
            prob_chart = create_risk_probability_chart(probabilities)
            st.plotly_chart(prob_chart, use_container_width=True, key="risk_probability_chart")
        
        # Risk level descriptions
        st.markdown("<h4>Risk Levels Explained</h4>", unsafe_allow_html=True)
        
        risk_descriptions = {
            "Low": """

                <div style="border-left: 3px solid #7FD8BE; padding-left: 10px; margin: 10px 0;">

                    <strong style="color: #7FD8BE;">Low Risk</strong>: Your symptoms suggest a condition that is likely non-urgent. 

                    While it's good to stay vigilant, these types of conditions typically don't require immediate medical attention 

                    and can often be managed with self-care or a routine appointment within the next few days or weeks.

                </div>

            """,
            
            "Medium": """

                <div style="border-left: 3px solid #FFC857; padding-left: 10px; margin: 10px 0;">

                    <strong style="color: #FFC857;">Medium Risk</strong>: Your symptoms indicate a condition that may need medical attention 

                    soon, but may not be an emergency. Consider scheduling an appointment with your primary care provider within 24-48 hours, 

                    or visit an urgent care facility if your symptoms worsen or if you cannot schedule a timely appointment.

                </div>

            """,
            
            "High": """

                <div style="border-left: 3px solid #E84855; padding-left: 10px; margin: 10px 0;">

                    <strong style="color: #E84855;">High Risk</strong>: Your symptoms suggest a potentially serious condition that requires 

                    prompt medical attention. Consider seeking emergency care or calling emergency services if symptoms are severe or rapidly 

                    worsening, especially if they include difficulty breathing, severe pain, or altered consciousness.

                </div>

            """
        }
        
        # Display the description for the current risk level first
        if risk_level in risk_descriptions:
            st.markdown(risk_descriptions[risk_level], unsafe_allow_html=True)
        
        # Then display the others
        for level, desc in risk_descriptions.items():
            if level != risk_level:
                st.markdown(desc, unsafe_allow_html=True)
        
        st.markdown("</div>", unsafe_allow_html=True)
        
        # Disclaimer
        st.warning("""

            **Important Disclaimer**: This risk assessment is based on AI analysis and should be used as a guidance only. 

            It is not a definitive medical diagnosis. Always consult with a healthcare professional for proper evaluation, 

            especially if you experience severe symptoms, symptoms that persist or worsen, or if you're unsure about your condition.

        """)
    
    # Recommendations tab
    with tabs[3]:
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Detailed Recommendations</h3>

        """, unsafe_allow_html=True)
        
        recommendation = result.get("recommendation", "No recommendations available.")
        
        # Split recommendation into paragraphs for better readability
        recommendation_parts = recommendation.split('. ')
        formatted_recommendation = ""
        
        current_paragraph = []
        for part in recommendation_parts:
            current_paragraph.append(part)
            
            # Start a new paragraph every 2-3 sentences
            if len(current_paragraph) >= 2 and part.endswith('.'):
                formatted_recommendation += '. '.join(current_paragraph) + ".<br><br>"
                current_paragraph = []
        
        # Add any remaining parts
        if current_paragraph:
            formatted_recommendation += '. '.join(current_paragraph)
        
        st.markdown(f"<p>{formatted_recommendation}</p>", unsafe_allow_html=True)
        
        st.markdown("</div>", unsafe_allow_html=True)
        
        # Department suggestion based on symptoms
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Suggested Medical Departments</h3>

        """, unsafe_allow_html=True)
        
        # 使用模型生成的科室建议而不是规则基础的建议
        departments = result.get("structured_recommendation", {}).get("departments", [])
        if not departments:
            departments = ["General Medicine / Primary Care"]
        
        # Display departments
        for dept in departments:
            st.markdown(f"• **{dept}**", unsafe_allow_html=True)
        
        st.markdown("<br><em>Note: Department suggestions are based on your symptoms and risk level. Consult with a healthcare provider for proper referral.</em>", unsafe_allow_html=True)
        
        st.markdown("</div>", unsafe_allow_html=True)
        
        # Self-care suggestions
        st.markdown("""

        <div class="card">

            <h3 class="card-header">Self-Care Suggestions</h3>

        """, unsafe_allow_html=True)
        
        # 使用模型生成的自我护理建议
        self_care_tips = result.get("structured_recommendation", {}).get("self_care", [])
        
        if self_care_tips:
            st.markdown("<ul>", unsafe_allow_html=True)
            for tip in self_care_tips:
                st.markdown(f"<li>{tip}</li>", unsafe_allow_html=True)
            st.markdown("</ul>", unsafe_allow_html=True)
        else:
            # 如果没有获取到模型生成的自我护理建议,则显示默认信息
            risk_level = result.get("risk", {}).get("risk_level", "Medium")
            if risk_level == "Low":
                st.markdown("""

                    <p>While waiting for your symptoms to improve:</p>

                    <ul>

                        <li>Ensure you're getting adequate rest</li>

                        <li>Stay hydrated by drinking plenty of water</li>

                        <li>Monitor your symptoms and note any changes</li>

                        <li>Consider over-the-counter medications appropriate for your symptoms</li>

                        <li>Maintain a balanced diet to support your immune system</li>

                    </ul>

                """, unsafe_allow_html=True)
            elif risk_level == "Medium":
                st.markdown("""

                    <p>While arranging medical care:</p>

                    <ul>

                        <li>Rest and avoid strenuous activities</li>

                        <li>Stay hydrated and maintain proper nutrition</li>

                        <li>Take your temperature and other vital signs if possible</li>

                        <li>Write down any changes in symptoms and when they occur</li>

                        <li>Have someone stay with you if your symptoms are concerning</li>

                    </ul>

                """, unsafe_allow_html=True)
            else:  # High risk
                st.markdown("""

                    <p>While seeking emergency care:</p>

                    <ul>

                        <li>Don't wait - seek medical attention immediately</li>

                        <li>Have someone drive you to the emergency room if safe to do so</li>

                        <li>Call emergency services if symptoms are severe</li>

                        <li>Bring a list of your current medications if possible</li>

                        <li>Follow any first aid protocols appropriate for your symptoms</li>

                    </ul>

                """, unsafe_allow_html=True)
        
        st.markdown("</div>", unsafe_allow_html=True)

# Footer
st.markdown("""

<div class="footer">

    <p>AI Medical Consultation System | Created with Streamlit | Not a substitute for professional medical advice</p>

    <p>Powered by: dmis-lab/biobert-v1.1, microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract, and fine-tuned T5-small</p>

</div>

""", unsafe_allow_html=True)