Billy_Space / app.py
BillyZ1129's picture
Upload 26 files
12be8f3 verified
import streamlit as st
import pandas as pd
import time
import torch
import os
from models import MedicalConsultationPipeline
from utils import (
highlight_text_with_entities,
format_duration,
create_risk_gauge,
create_risk_probability_chart,
save_consultation,
load_consultation_history,
init_session_state,
RISK_COLORS
)
# Page configuration
st.set_page_config(
page_title="AI Medical Consultation",
page_icon="🩺",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
def load_css():
with open("style.css", "r") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# 检查本地是否有fine-tuned的T5模型
def find_fine_tuned_model():
possible_local_paths = [
"./finetuned_t5-small", # 添加用户提供的微调模型路径
"./t5-small-medical-recommendation",
"./models/t5-small-medical-recommendation",
"./fine_tuned_models/t5-small",
"./output",
"./fine_tuning_output"
]
for path in possible_local_paths:
if os.path.exists(path):
return path
return "t5-small" # 如果没有找到,返回基础模型
# Initialize session state
init_session_state()
# Apply custom CSS
load_css()
# Sidebar for settings and history
with st.sidebar:
st.image("https://img.icons8.com/fluency/96/000000/hospital-3.png", width=80)
st.title("AI Medical Assistant")
st.markdown("---")
with st.expander("⚙️ Settings", expanded=False):
# Model settings
st.subheader("Model Settings")
symptom_model = st.selectbox(
"Symptom Extraction Model",
["dmis-lab/biobert-v1.1"],
index=0,
disabled=st.session_state.loaded_models # Disable after models are loaded
)
risk_model = st.selectbox(
"Risk Classification Model",
["microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract"],
index=0,
disabled=st.session_state.loaded_models # Disable after models are loaded
)
# 查找可用的t5模型
available_t5_model = find_fine_tuned_model()
recommendation_model_options = []
# 总是添加基础模型
recommendation_model_options.append("t5-small (base model)")
# 如果找到了fine-tuned模型,添加到选项中
if available_t5_model != "t5-small":
recommendation_model_options.insert(0, f"{available_t5_model} (fine-tuned)")
recommendation_model_label = st.selectbox(
"Recommendation Model",
recommendation_model_options,
index=0,
disabled=st.session_state.loaded_models # Disable after models are loaded
)
# 提取实际的模型路径
if "(fine-tuned)" in recommendation_model_label:
recommendation_model = available_t5_model
else:
recommendation_model = "t5-small"
# Device selection
device = st.radio(
"Compute Device",
["CPU", "GPU (if available)"],
index=1 if torch.cuda.is_available() else 0,
disabled=st.session_state.loaded_models # Disable after models are loaded
)
device = "cuda" if device == "GPU (if available)" and torch.cuda.is_available() else "cpu"
if st.session_state.loaded_models:
st.info("注意:设置已锁定,因为模型已加载。要更改设置,请刷新页面。")
# Consultation history section
st.markdown("---")
st.subheader("📋 Consultation History")
# Load consultation history
if st.button("Refresh History"):
st.session_state.consultation_history = load_consultation_history()
st.success("History refreshed!")
# If history is not already loaded, load it
if not st.session_state.consultation_history:
st.session_state.consultation_history = load_consultation_history()
# Display history items
if not st.session_state.consultation_history:
st.info("No previous consultations found.")
else:
for i, consultation in enumerate(st.session_state.consultation_history[:10]): # Show only the 10 most recent
timestamp = pd.to_datetime(consultation.get("timestamp", "")).strftime("%Y-%m-%d %H:%M")
risk_level = consultation.get("risk", {}).get("risk_level", "Unknown")
risk_color = RISK_COLORS.get(risk_level, "#6c757d")
# Create a clickable history item
history_item = f"""
<div class='history-item' onclick=''>
<strong>Patient Input:</strong> {consultation.get('input_text', '')[:50]}...<br>
<strong>Time:</strong> {timestamp}<br>
<strong>Risk Level:</strong> <span style='color:{risk_color};'>{risk_level}</span>
</div>
"""
clicked = st.markdown(history_item, unsafe_allow_html=True)
# If clicked, set this consultation as the current result
if clicked:
st.session_state.current_result = consultation
# Main app layout
st.markdown("<h1 class='main-header'>AI-Powered Medical Consultation</h1>", unsafe_allow_html=True)
# Introduction row
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("""
<div class="card">
<h2 class="card-header">How it Works</h2>
<p>This AI-powered medical consultation system helps you understand your symptoms and provides guidance on next steps.</p>
<p><strong>Simply describe your symptoms</strong> in natural language and the system will:</p>
<ol>
<li>Extract key symptoms and duration information</li>
<li>Assess your risk level</li>
<li>Generate personalized medical recommendations</li>
</ol>
<p><em>Note: This system is for informational purposes only and does not replace professional medical advice.</em></p>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="card">
<h2 class="card-header">Example Inputs</h2>
<ul>
<li>"I've been experiencing severe headaches and dizziness for about 2 weeks. Sometimes I also feel nauseous."</li>
<li>"My child has had a high fever of 39°C since yesterday and is coughing a lot."</li>
<li>"I've noticed a persistent rash on my arm for the past 3 days, it's itchy and slightly swollen."</li>
</ul>
</div>
""", unsafe_allow_html=True)
# 显示当前使用的模型信息
model_info = f"""
<div class="card">
<h2 class="card-header">当前模型配置</h2>
<ul>
<li><strong>症状抽取模型:</strong> {symptom_model}</li>
<li><strong>风险分类模型:</strong> {risk_model}</li>
<li><strong>推荐生成模型:</strong> {recommendation_model} {"(微调模型)" if recommendation_model != "t5-small" else "(基础模型)"}</li>
<li><strong>计算设备:</strong> {device.upper()}</li>
</ul>
</div>
"""
st.markdown(model_info, unsafe_allow_html=True)
# Load models on first run or when settings change
@st.cache_resource
def load_pipeline(_symptom_model, _risk_model, _recommendation_model, _device):
return MedicalConsultationPipeline(
symptom_model=_symptom_model,
risk_model=_risk_model,
recommendation_model=_recommendation_model,
device=_device
)
# Only load models if they haven't been loaded yet
if not st.session_state.loaded_models:
try:
with st.spinner("Loading AI models... This may take a minute..."):
pipeline = load_pipeline(symptom_model, risk_model, recommendation_model, device)
st.session_state.pipeline = pipeline
st.session_state.loaded_models = True
st.success("✅ Models loaded successfully!")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
else:
pipeline = st.session_state.pipeline
# Input section
st.markdown("<h2 class='subheader'>Describe Your Symptoms</h2>", unsafe_allow_html=True)
# Text input for patient description
patient_input = st.text_area(
"Please describe your symptoms, including when they started and any other relevant information:",
height=150,
placeholder="Example: I've been experiencing severe headaches and dizziness for about 2 weeks. Sometimes I also feel nauseous."
)
# Process button
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
process_button = st.button("Analyze Symptoms", type="primary", use_container_width=True)
# Handle processing
if process_button and patient_input and not st.session_state.is_processing:
st.session_state.is_processing = True
# Process the input
with st.spinner("Analyzing your symptoms..."):
try:
# Process through pipeline
start_time = time.time()
result = pipeline.process(patient_input)
elapsed_time = time.time() - start_time
# Save result to session state
st.session_state.current_result = result
# Save consultation to history
save_consultation(result)
# Success message
st.success(f"Analysis completed in {elapsed_time:.2f} seconds!")
except Exception as e:
st.error(f"Error processing your input: {str(e)}")
st.session_state.is_processing = False
# Results section - show if there's a current result
if st.session_state.current_result:
result = st.session_state.current_result
st.markdown("<h2 class='subheader'>Consultation Results</h2>", unsafe_allow_html=True)
# Create tabs for different sections of the results
tabs = st.tabs(["Overview", "Symptoms Analysis", "Risk Assessment", "Recommendations"])
# Overview tab - summary of all results
with tabs[0]:
col1, col2 = st.columns([3, 2])
with col1:
st.markdown("""
<div class="card">
<h3 class="card-header">Patient Description</h3>
""", unsafe_allow_html=True)
# Highlight symptoms and duration in the text
highlighted_text = highlight_text_with_entities(
result.get("input_text", ""),
result.get("extraction", {}).get("symptoms", [])
)
st.markdown(f"<p>{highlighted_text}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Recommendations card
st.markdown("""
<div class="card">
<h3 class="card-header">Medical Recommendations</h3>
<div class="recommendation-container">
""", unsafe_allow_html=True)
recommendation = result.get("recommendation", "No recommendations available.")
st.markdown(f"<p>{recommendation}</p>", unsafe_allow_html=True)
st.markdown("""
</div>
<p><em>Note: This is AI-generated guidance and should not replace professional medical advice.</em></p>
</div>
""", unsafe_allow_html=True)
with col2:
# Risk level card
risk_level = result.get("risk", {}).get("risk_level", "Unknown")
confidence = result.get("risk", {}).get("confidence", 0.0)
st.markdown(f"""
<div class="card">
<h3 class="card-header">Risk Assessment</h3>
<div style="text-align: center;">
<span class="risk-{risk_level.lower()}" style="font-size: 1.8rem;">{risk_level}</span>
<p>Confidence: {confidence:.1%}</p>
</div>
""", unsafe_allow_html=True)
# Add risk gauge
risk_gauge = create_risk_gauge(risk_level, confidence)
st.plotly_chart(risk_gauge, use_container_width=True, key="overview_risk_gauge")
st.markdown("</div>", unsafe_allow_html=True)
# Extracted symptoms summary
st.markdown("""
<div class="card">
<h3 class="card-header">Key Findings</h3>
""", unsafe_allow_html=True)
symptoms = result.get("extraction", {}).get("symptoms", [])
duration = result.get("extraction", {}).get("duration", [])
if symptoms:
st.markdown("<strong>Identified Symptoms:</strong>", unsafe_allow_html=True)
for symptom in symptoms:
st.markdown(f"• {symptom['text']} ({symptom['score']:.1%} confidence)", unsafe_allow_html=True)
else:
st.info("No specific symptoms identified")
st.markdown("<br><strong>Duration Information:</strong>", unsafe_allow_html=True)
st.markdown(f"<p>{format_duration(duration)}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Symptoms Analysis tab
with tabs[1]:
st.markdown("""
<div class="card">
<h3 class="card-header">Detailed Symptom Analysis</h3>
""", unsafe_allow_html=True)
symptoms = result.get("extraction", {}).get("symptoms", [])
if symptoms:
# Create a DataFrame for symptoms
symptom_df = pd.DataFrame([
{
"Symptom": s["text"],
"Confidence": s["score"],
"Start Position": s["start"],
"End Position": s["end"]
} for s in symptoms
])
# Sort by confidence
symptom_df = symptom_df.sort_values("Confidence", ascending=False)
# Display DataFrame
st.dataframe(symptom_df, use_container_width=True)
# Bar chart of symptoms by confidence
if len(symptoms) > 1:
st.markdown("<h4>Symptom Confidence Scores</h4>", unsafe_allow_html=True)
chart_data = symptom_df[["Symptom", "Confidence"]].set_index("Symptom")
st.bar_chart(chart_data, use_container_width=True)
else:
st.info("No specific symptoms were detected in the input text.")
st.markdown("</div>", unsafe_allow_html=True)
# Duration information card
st.markdown("""
<div class="card">
<h3 class="card-header">Duration Analysis</h3>
""", unsafe_allow_html=True)
duration = result.get("extraction", {}).get("duration", [])
if duration:
# Create a DataFrame for duration information
duration_df = pd.DataFrame([
{
"Duration": d["text"],
"Start Position": d["start"],
"End Position": d["end"]
} for d in duration
])
# Display DataFrame
st.dataframe(duration_df, use_container_width=True)
# Highlight duration in text
st.markdown("<h4>Original Text with Duration Highlighted</h4>", unsafe_allow_html=True)
# Highlight duration in a different color
duration_text = result.get("input_text", "")
sorted_duration = sorted(duration, key=lambda x: x['start'], reverse=True)
for d in sorted_duration:
start = d['start']
end = d['end']
highlight = f"<span class='duration-highlight'>{duration_text[start:end]}</span>"
duration_text = duration_text[:start] + highlight + duration_text[end:]
st.markdown(f"<p>{duration_text}</p>", unsafe_allow_html=True)
else:
st.info("No specific duration information was detected in the input text.")
st.markdown("</div>", unsafe_allow_html=True)
# Risk Assessment tab
with tabs[2]:
st.markdown("""
<div class="card">
<h3 class="card-header">Risk Level Assessment</h3>
""", unsafe_allow_html=True)
risk_data = result.get("risk", {})
risk_level = risk_data.get("risk_level", "Unknown")
confidence = risk_data.get("confidence", 0.0)
probabilities = risk_data.get("all_probabilities", {})
col1, col2 = st.columns(2)
with col1:
# Display risk gauge
risk_gauge = create_risk_gauge(risk_level, confidence)
st.plotly_chart(risk_gauge, use_container_width=True, key="risk_assessment_gauge")
with col2:
# Display probability distribution
prob_chart = create_risk_probability_chart(probabilities)
st.plotly_chart(prob_chart, use_container_width=True, key="risk_probability_chart")
# Risk level descriptions
st.markdown("<h4>Risk Levels Explained</h4>", unsafe_allow_html=True)
risk_descriptions = {
"Low": """
<div style="border-left: 3px solid #7FD8BE; padding-left: 10px; margin: 10px 0;">
<strong style="color: #7FD8BE;">Low Risk</strong>: Your symptoms suggest a condition that is likely non-urgent.
While it's good to stay vigilant, these types of conditions typically don't require immediate medical attention
and can often be managed with self-care or a routine appointment within the next few days or weeks.
</div>
""",
"Medium": """
<div style="border-left: 3px solid #FFC857; padding-left: 10px; margin: 10px 0;">
<strong style="color: #FFC857;">Medium Risk</strong>: Your symptoms indicate a condition that may need medical attention
soon, but may not be an emergency. Consider scheduling an appointment with your primary care provider within 24-48 hours,
or visit an urgent care facility if your symptoms worsen or if you cannot schedule a timely appointment.
</div>
""",
"High": """
<div style="border-left: 3px solid #E84855; padding-left: 10px; margin: 10px 0;">
<strong style="color: #E84855;">High Risk</strong>: Your symptoms suggest a potentially serious condition that requires
prompt medical attention. Consider seeking emergency care or calling emergency services if symptoms are severe or rapidly
worsening, especially if they include difficulty breathing, severe pain, or altered consciousness.
</div>
"""
}
# Display the description for the current risk level first
if risk_level in risk_descriptions:
st.markdown(risk_descriptions[risk_level], unsafe_allow_html=True)
# Then display the others
for level, desc in risk_descriptions.items():
if level != risk_level:
st.markdown(desc, unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Disclaimer
st.warning("""
**Important Disclaimer**: This risk assessment is based on AI analysis and should be used as a guidance only.
It is not a definitive medical diagnosis. Always consult with a healthcare professional for proper evaluation,
especially if you experience severe symptoms, symptoms that persist or worsen, or if you're unsure about your condition.
""")
# Recommendations tab
with tabs[3]:
st.markdown("""
<div class="card">
<h3 class="card-header">Detailed Recommendations</h3>
""", unsafe_allow_html=True)
recommendation = result.get("recommendation", "No recommendations available.")
# Split recommendation into paragraphs for better readability
recommendation_parts = recommendation.split('. ')
formatted_recommendation = ""
current_paragraph = []
for part in recommendation_parts:
current_paragraph.append(part)
# Start a new paragraph every 2-3 sentences
if len(current_paragraph) >= 2 and part.endswith('.'):
formatted_recommendation += '. '.join(current_paragraph) + ".<br><br>"
current_paragraph = []
# Add any remaining parts
if current_paragraph:
formatted_recommendation += '. '.join(current_paragraph)
st.markdown(f"<p>{formatted_recommendation}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Department suggestion based on symptoms
st.markdown("""
<div class="card">
<h3 class="card-header">Suggested Medical Departments</h3>
""", unsafe_allow_html=True)
# 使用模型生成的科室建议而不是规则基础的建议
departments = result.get("structured_recommendation", {}).get("departments", [])
if not departments:
departments = ["General Medicine / Primary Care"]
# Display departments
for dept in departments:
st.markdown(f"• **{dept}**", unsafe_allow_html=True)
st.markdown("<br><em>Note: Department suggestions are based on your symptoms and risk level. Consult with a healthcare provider for proper referral.</em>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Self-care suggestions
st.markdown("""
<div class="card">
<h3 class="card-header">Self-Care Suggestions</h3>
""", unsafe_allow_html=True)
# 使用模型生成的自我护理建议
self_care_tips = result.get("structured_recommendation", {}).get("self_care", [])
if self_care_tips:
st.markdown("<ul>", unsafe_allow_html=True)
for tip in self_care_tips:
st.markdown(f"<li>{tip}</li>", unsafe_allow_html=True)
st.markdown("</ul>", unsafe_allow_html=True)
else:
# 如果没有获取到模型生成的自我护理建议,则显示默认信息
risk_level = result.get("risk", {}).get("risk_level", "Medium")
if risk_level == "Low":
st.markdown("""
<p>While waiting for your symptoms to improve:</p>
<ul>
<li>Ensure you're getting adequate rest</li>
<li>Stay hydrated by drinking plenty of water</li>
<li>Monitor your symptoms and note any changes</li>
<li>Consider over-the-counter medications appropriate for your symptoms</li>
<li>Maintain a balanced diet to support your immune system</li>
</ul>
""", unsafe_allow_html=True)
elif risk_level == "Medium":
st.markdown("""
<p>While arranging medical care:</p>
<ul>
<li>Rest and avoid strenuous activities</li>
<li>Stay hydrated and maintain proper nutrition</li>
<li>Take your temperature and other vital signs if possible</li>
<li>Write down any changes in symptoms and when they occur</li>
<li>Have someone stay with you if your symptoms are concerning</li>
</ul>
""", unsafe_allow_html=True)
else: # High risk
st.markdown("""
<p>While seeking emergency care:</p>
<ul>
<li>Don't wait - seek medical attention immediately</li>
<li>Have someone drive you to the emergency room if safe to do so</li>
<li>Call emergency services if symptoms are severe</li>
<li>Bring a list of your current medications if possible</li>
<li>Follow any first aid protocols appropriate for your symptoms</li>
</ul>
""", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p>AI Medical Consultation System | Created with Streamlit | Not a substitute for professional medical advice</p>
<p>Powered by: dmis-lab/biobert-v1.1, microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract, and fine-tuned T5-small</p>
</div>
""", unsafe_allow_html=True)