Spaces:
Sleeping
Sleeping
Bibek Mukherjee
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,227 +0,0 @@
|
|
1 |
-
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import seaborn as sns
|
7 |
-
import pickle
|
8 |
-
import gradio as gr
|
9 |
-
import os
|
10 |
-
|
11 |
-
# Load the model
|
12 |
-
model_path = 'career_prediction_model.pkl'
|
13 |
-
with open(model_path, 'rb') as f:
|
14 |
-
saved_data = pickle.load(f)
|
15 |
-
|
16 |
-
model = saved_data['model']
|
17 |
-
label_encoders = saved_data['label_encoders']
|
18 |
-
target_encoder = saved_data['target_encoder']
|
19 |
-
features = saved_data['features']
|
20 |
-
target = 'What would you like to become when you grow up'
|
21 |
-
|
22 |
-
# Function for individual prediction
|
23 |
-
def predict_career(work_env, academic_perf, motivation, leadership, tech_savvy):
|
24 |
-
# Prepare input data
|
25 |
-
input_data = pd.DataFrame({
|
26 |
-
'Preferred Work Environment': [work_env],
|
27 |
-
'Academic Performance (CGPA/Percentage)': [float(academic_perf)],
|
28 |
-
'Motivation for Career Choice ': [motivation], # Note the space at the end
|
29 |
-
'Leadership Experience': [leadership],
|
30 |
-
'Tech-Savviness': [tech_savvy]
|
31 |
-
})
|
32 |
-
|
33 |
-
# Encode categorical features
|
34 |
-
for feature in features:
|
35 |
-
if feature in label_encoders and input_data[feature].dtype == 'object':
|
36 |
-
try:
|
37 |
-
input_data[feature] = label_encoders[feature].transform(input_data[feature])
|
38 |
-
except ValueError:
|
39 |
-
# Handle unknown categories
|
40 |
-
print(f"Warning: Unknown category in {feature}. Using most frequent category.")
|
41 |
-
input_data[feature] = 0 # Default to first category
|
42 |
-
|
43 |
-
# Make prediction
|
44 |
-
prediction = model.predict(input_data)[0]
|
45 |
-
predicted_career = target_encoder.inverse_transform([int(prediction)])[0]
|
46 |
-
|
47 |
-
# Get probabilities for all classes
|
48 |
-
if hasattr(model, 'predict_proba'):
|
49 |
-
probabilities = model.predict_proba(input_data)[0]
|
50 |
-
class_probs = {target_encoder.inverse_transform([i])[0]: prob
|
51 |
-
for i, prob in enumerate(probabilities)}
|
52 |
-
sorted_probs = dict(sorted(class_probs.items(), key=lambda x: x[1], reverse=True))
|
53 |
-
|
54 |
-
result = f"Predicted career: {predicted_career}\n\nProbabilities:\n"
|
55 |
-
for career, prob in sorted_probs.items():
|
56 |
-
result += f"{career}: {prob:.2f}\n"
|
57 |
-
return result
|
58 |
-
else:
|
59 |
-
return f"Predicted career: {predicted_career}"
|
60 |
-
|
61 |
-
# Function for batch evaluation
|
62 |
-
def evaluate_model_with_csv(csv_file):
|
63 |
-
try:
|
64 |
-
# Try different encodings
|
65 |
-
encodings = ['utf-8', 'latin1', 'ISO-8859-1', 'cp1252', 'utf-8-sig']
|
66 |
-
|
67 |
-
# Try each encoding until one works
|
68 |
-
for encoding in encodings:
|
69 |
-
try:
|
70 |
-
test_df = pd.read_csv(csv_file.name, encoding=encoding)
|
71 |
-
break
|
72 |
-
except UnicodeDecodeError:
|
73 |
-
if encoding == encodings[-1]:
|
74 |
-
return ["Error: Could not decode the CSV file with any common encodings.", None]
|
75 |
-
continue
|
76 |
-
except Exception as e:
|
77 |
-
if encoding == encodings[-1]:
|
78 |
-
return [f"Error reading CSV: {str(e)}", None]
|
79 |
-
continue
|
80 |
-
|
81 |
-
# Check if required columns exist
|
82 |
-
missing_cols = [col for col in features + [target] if col not in test_df.columns]
|
83 |
-
if missing_cols:
|
84 |
-
return [f"Error: The following required columns are missing in the CSV: {missing_cols}", None]
|
85 |
-
|
86 |
-
# Preprocess the test data
|
87 |
-
X_eval = test_df[features].copy()
|
88 |
-
|
89 |
-
# Handle missing values
|
90 |
-
X_eval = X_eval.fillna('Unknown')
|
91 |
-
|
92 |
-
# Convert Academic Performance to numeric
|
93 |
-
X_eval['Academic Performance (CGPA/Percentage)'] = pd.to_numeric(
|
94 |
-
X_eval['Academic Performance (CGPA/Percentage)'], errors='coerce')
|
95 |
-
X_eval['Academic Performance (CGPA/Percentage)'].fillna(
|
96 |
-
X_eval['Academic Performance (CGPA/Percentage)'].mean(), inplace=True)
|
97 |
-
|
98 |
-
# Encode categorical features
|
99 |
-
for feature in features:
|
100 |
-
if feature in label_encoders and X_eval[feature].dtype == 'object':
|
101 |
-
# Handle unknown categories by mapping them to 0
|
102 |
-
X_eval[feature] = X_eval[feature].apply(
|
103 |
-
lambda x: label_encoders[feature].transform([x])[0]
|
104 |
-
if x in label_encoders[feature].classes_ else 0
|
105 |
-
)
|
106 |
-
|
107 |
-
# Get the true labels
|
108 |
-
y_true = test_df[target].copy()
|
109 |
-
y_true = y_true.fillna('Corporate Employee')
|
110 |
-
|
111 |
-
# Encode the true labels
|
112 |
-
y_true_encoded = y_true.apply(
|
113 |
-
lambda x: target_encoder.transform([x])[0]
|
114 |
-
if x in target_encoder.classes_ else 0
|
115 |
-
).values
|
116 |
-
|
117 |
-
# Make predictions
|
118 |
-
y_pred = model.predict(X_eval)
|
119 |
-
y_pred = np.array(y_pred).astype(int)
|
120 |
-
|
121 |
-
# Calculate accuracy
|
122 |
-
accuracy = accuracy_score(y_true_encoded, y_pred)
|
123 |
-
|
124 |
-
# Create a DataFrame with actual vs predicted values
|
125 |
-
results_df = pd.DataFrame({
|
126 |
-
'Actual Career': [target_encoder.classes_[i] for i in y_true_encoded],
|
127 |
-
'Predicted Career': [target_encoder.classes_[i] for i in y_pred]
|
128 |
-
})
|
129 |
-
|
130 |
-
# Count correct predictions
|
131 |
-
results_df['Correct'] = results_df['Actual Career'] == results_df['Predicted Career']
|
132 |
-
correct_count = results_df['Correct'].sum()
|
133 |
-
total_count = len(results_df)
|
134 |
-
|
135 |
-
# Create confusion matrix
|
136 |
-
plt.figure(figsize=(12, 10))
|
137 |
-
cm = pd.crosstab(results_df['Actual Career'], results_df['Predicted Career'])
|
138 |
-
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
|
139 |
-
plt.title('Confusion Matrix')
|
140 |
-
plt.ylabel('Actual Career')
|
141 |
-
plt.xlabel('Predicted Career')
|
142 |
-
plt.tight_layout()
|
143 |
-
|
144 |
-
# Save the confusion matrix
|
145 |
-
cm_path = 'confusion_matrix.png'
|
146 |
-
plt.savefig(cm_path)
|
147 |
-
|
148 |
-
# Prepare the results
|
149 |
-
result_text = f"Model Evaluation Results:\n\n"
|
150 |
-
result_text += f"Total samples: {total_count}\n"
|
151 |
-
result_text += f"Correct predictions: {correct_count}\n"
|
152 |
-
result_text += f"Accuracy: {accuracy:.4f}\n\n"
|
153 |
-
|
154 |
-
# Generate classification report
|
155 |
-
report = classification_report(y_true_encoded, y_pred,
|
156 |
-
target_names=target_encoder.classes_,
|
157 |
-
output_dict=True)
|
158 |
-
|
159 |
-
# Add class-wise metrics
|
160 |
-
result_text += "Class-wise Performance:\n"
|
161 |
-
for class_name in target_encoder.classes_:
|
162 |
-
if class_name in report:
|
163 |
-
result_text += f"\n{class_name}:\n"
|
164 |
-
result_text += f" Precision: {report[class_name]['precision']:.4f}\n"
|
165 |
-
result_text += f" Recall: {report[class_name]['recall']:.4f}\n"
|
166 |
-
result_text += f" F1-score: {report[class_name]['f1-score']:.4f}\n"
|
167 |
-
|
168 |
-
return [result_text, cm_path]
|
169 |
-
|
170 |
-
except Exception as e:
|
171 |
-
import traceback
|
172 |
-
error_details = traceback.format_exc()
|
173 |
-
print(f"Error in evaluation: {str(e)}\n{error_details}")
|
174 |
-
|
175 |
-
# Create a simple error image
|
176 |
-
plt.figure(figsize=(6, 4))
|
177 |
-
plt.text(0.5, 0.5, f"Error: {str(e)}",
|
178 |
-
horizontalalignment='center', verticalalignment='center', fontsize=12, color='red')
|
179 |
-
plt.axis('off')
|
180 |
-
error_path = 'error_image.png'
|
181 |
-
plt.savefig(error_path)
|
182 |
-
|
183 |
-
return [f"Error: {str(e)}", error_path]
|
184 |
-
|
185 |
-
# Get unique values for dropdowns
|
186 |
-
work_env_options = list(label_encoders['Preferred Work Environment'].classes_)
|
187 |
-
motivation_options = list(label_encoders['Motivation for Career Choice '].classes_)
|
188 |
-
leadership_options = list(label_encoders['Leadership Experience'].classes_)
|
189 |
-
tech_savvy_options = list(label_encoders['Tech-Savviness'].classes_)
|
190 |
-
|
191 |
-
# Create the Gradio interface
|
192 |
-
iface = gr.Interface(
|
193 |
-
fn=predict_career,
|
194 |
-
inputs=[
|
195 |
-
gr.Dropdown(work_env_options, label="Preferred Work Environment"),
|
196 |
-
gr.Number(label="Academic Performance (CGPA/Percentage)", minimum=0, maximum=10),
|
197 |
-
gr.Dropdown(motivation_options, label="Motivation for Career Choice"),
|
198 |
-
gr.Dropdown(leadership_options, label="Leadership Experience"),
|
199 |
-
gr.Dropdown(tech_savvy_options, label="Tech-Savviness")
|
200 |
-
],
|
201 |
-
outputs="text",
|
202 |
-
title="Career Prediction Model",
|
203 |
-
description="Enter your details to predict your future career path",
|
204 |
-
theme="huggingface"
|
205 |
-
)
|
206 |
-
|
207 |
-
# Create a separate interface for model evaluation
|
208 |
-
eval_iface = gr.Interface(
|
209 |
-
fn=evaluate_model_with_csv,
|
210 |
-
inputs=gr.File(label="Upload Test CSV File"),
|
211 |
-
outputs=[
|
212 |
-
gr.Textbox(label="Evaluation Results"),
|
213 |
-
gr.Image(label="Confusion Matrix")
|
214 |
-
],
|
215 |
-
title="Career Prediction Model Evaluation",
|
216 |
-
description="Upload a CSV file with test data to evaluate the model's performance",
|
217 |
-
theme="huggingface"
|
218 |
-
)
|
219 |
-
|
220 |
-
# Create a tabbed interface
|
221 |
-
demo = gr.TabbedInterface(
|
222 |
-
[iface, eval_iface],
|
223 |
-
["Individual Prediction", "Batch Evaluation"]
|
224 |
-
)
|
225 |
-
|
226 |
-
# Launch the interface
|
227 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|