Update app.py
Browse files
app.py
CHANGED
@@ -164,11 +164,70 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
164 |
# if __name__ == "__main__":
|
165 |
# demo.launch()
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
import gradio as gr
|
168 |
from huggingface_hub import InferenceClient
|
|
|
|
|
169 |
|
170 |
-
#
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def respond(message, history: list[tuple[str, str]]):
|
174 |
system_message = (
|
@@ -181,7 +240,7 @@ def respond(message, history: list[tuple[str, str]]):
|
|
181 |
temperature = 0.7
|
182 |
top_p = 0.95
|
183 |
|
184 |
-
# Build
|
185 |
messages = [{"role": "system", "content": system_message}]
|
186 |
for user_msg, assistant_msg in history:
|
187 |
if user_msg:
|
@@ -191,7 +250,7 @@ def respond(message, history: list[tuple[str, str]]):
|
|
191 |
messages.append({"role": "user", "content": message})
|
192 |
|
193 |
response = ""
|
194 |
-
#
|
195 |
for chunk in client.chat.completions.create(
|
196 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
197 |
messages=messages,
|
@@ -200,12 +259,11 @@ def respond(message, history: list[tuple[str, str]]):
|
|
200 |
temperature=temperature,
|
201 |
top_p=top_p,
|
202 |
):
|
203 |
-
# 3. Extract token content
|
204 |
token = chunk.choices[0].delta.content or ""
|
205 |
response += token
|
206 |
yield response
|
207 |
|
208 |
-
#
|
209 |
demo = gr.ChatInterface(respond, type="messages")
|
210 |
|
211 |
if __name__ == "__main__":
|
@@ -215,3 +273,4 @@ if __name__ == "__main__":
|
|
215 |
|
216 |
|
217 |
|
|
|
|
164 |
# if __name__ == "__main__":
|
165 |
# demo.launch()
|
166 |
|
167 |
+
# import gradio as gr
|
168 |
+
# from huggingface_hub import InferenceClient
|
169 |
+
|
170 |
+
# # 1. Instantiate with named model param
|
171 |
+
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct")
|
172 |
+
|
173 |
+
# def respond(message, history: list[tuple[str, str]]):
|
174 |
+
# system_message = (
|
175 |
+
# "You are a helpful and experienced coding assistant specialized in web development. "
|
176 |
+
# "Help the user by generating complete and functional code for building websites. "
|
177 |
+
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
178 |
+
# "based on their requirements."
|
179 |
+
# )
|
180 |
+
# max_tokens = 2048
|
181 |
+
# temperature = 0.7
|
182 |
+
# top_p = 0.95
|
183 |
+
|
184 |
+
# # Build messages in OpenAI-compatible format
|
185 |
+
# messages = [{"role": "system", "content": system_message}]
|
186 |
+
# for user_msg, assistant_msg in history:
|
187 |
+
# if user_msg:
|
188 |
+
# messages.append({"role": "user", "content": user_msg})
|
189 |
+
# if assistant_msg:
|
190 |
+
# messages.append({"role": "assistant", "content": assistant_msg})
|
191 |
+
# messages.append({"role": "user", "content": message})
|
192 |
+
|
193 |
+
# response = ""
|
194 |
+
# # 2. Use named parameters and alias if desired
|
195 |
+
# for chunk in client.chat.completions.create(
|
196 |
+
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
197 |
+
# messages=messages,
|
198 |
+
# max_tokens=max_tokens,
|
199 |
+
# stream=True,
|
200 |
+
# temperature=temperature,
|
201 |
+
# top_p=top_p,
|
202 |
+
# ):
|
203 |
+
# # 3. Extract token content
|
204 |
+
# token = chunk.choices[0].delta.content or ""
|
205 |
+
# response += token
|
206 |
+
# yield response
|
207 |
+
|
208 |
+
# # 4. Wire up Gradio chat interface
|
209 |
+
# demo = gr.ChatInterface(respond, type="messages")
|
210 |
+
|
211 |
+
# if __name__ == "__main__":
|
212 |
+
# demo.launch()
|
213 |
import gradio as gr
|
214 |
from huggingface_hub import InferenceClient
|
215 |
+
from dotenv import load_dotenv
|
216 |
+
import os
|
217 |
|
218 |
+
# Load environment variables from .env file
|
219 |
+
load_dotenv()
|
220 |
+
hf_token = os.getenv("HF_TOKEN")
|
221 |
+
|
222 |
+
# Ensure token is available
|
223 |
+
if hf_token is None:
|
224 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.")
|
225 |
+
|
226 |
+
# Instantiate Hugging Face Inference Client with token
|
227 |
+
client = InferenceClient(
|
228 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
229 |
+
token=hf_token
|
230 |
+
)
|
231 |
|
232 |
def respond(message, history: list[tuple[str, str]]):
|
233 |
system_message = (
|
|
|
240 |
temperature = 0.7
|
241 |
top_p = 0.95
|
242 |
|
243 |
+
# Build conversation history
|
244 |
messages = [{"role": "system", "content": system_message}]
|
245 |
for user_msg, assistant_msg in history:
|
246 |
if user_msg:
|
|
|
250 |
messages.append({"role": "user", "content": message})
|
251 |
|
252 |
response = ""
|
253 |
+
# Stream the response from the model
|
254 |
for chunk in client.chat.completions.create(
|
255 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
256 |
messages=messages,
|
|
|
259 |
temperature=temperature,
|
260 |
top_p=top_p,
|
261 |
):
|
|
|
262 |
token = chunk.choices[0].delta.content or ""
|
263 |
response += token
|
264 |
yield response
|
265 |
|
266 |
+
# Gradio UI
|
267 |
demo = gr.ChatInterface(respond, type="messages")
|
268 |
|
269 |
if __name__ == "__main__":
|
|
|
273 |
|
274 |
|
275 |
|
276 |
+
|