Spaces:
Sleeping
Sleeping
File size: 10,631 Bytes
f68c8d9 5c0aa98 f68c8d9 5c0aa98 f68c8d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import json
import random
import html
import markdown
from typing import List, Dict, Any, Tuple
import gradio as gr
import pandas as pd
from datasets import load_dataset
df = pd.read_json("selected_battles.json")
# load arena battles
# ds = load_dataset("lmarena-ai/arena-human-preference-100k")
# df = ds['train'].to_pandas()
# Expected columns in this dataset family:
# ['question_id','model_a','model_b','winner','conversation_a','conversation_b',
# 'turn','anony','language','tstamp','conv_metadata','is_code','is_refusal',
# 'dedup_tag','category_tag','judge_hash', ...]
# See HF card. ──> winner ∈ {model_a, model_b, tie, both_bad}; conversations are full threads. [oai_citation:1‡Hugging Face](https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k/blob/c9fe392b54cd08a0fd27777455318bac2e7b495c/README.md?utm_source=chatgpt.com)
# Dropdown options - sorted by frequency
def get_sorted_options(column_name):
if column_name not in df.columns:
return ["(Any)"]
value_counts = df[column_name].dropna().value_counts()
sorted_values = value_counts.index.tolist()
return ["(Any)"] + sorted_values
models_a = get_sorted_options("model_a")
models_b = get_sorted_options("model_b")
languages = get_sorted_options("language")
def _ensure_messages(x: Any) -> List[Dict[str, Any]]:
"""
conversation_a / conversation_b can be:
- a Python list of {role, content} dicts
- a JSON string encoding that list
Normalize to a list of dicts with 'role' and 'content'.
"""
if isinstance(x, list):
return x
if isinstance(x, str):
try:
val = json.loads(x)
if isinstance(val, list):
return val
except Exception:
pass
# Last resort: wrap as a single assistant message
return [{"role": "assistant", "content": str(x)}]
def _winner_text(row: pd.Series) -> str:
w = str(row.get("winner", "")).strip().lower()
mapping = {
"model_a": "Preference: Model A",
"model_b": "Preference: Model B",
"tie": "Preference: Tie",
"both_bad": "Preference: Tie (both bad)",
}
return mapping.get(w, "Preference: (unknown)")
def _bubble_html(messages: List[Dict[str, Any]], side_label: str) -> str:
"""
Make a chat-like interface with proper user/assistant bubbles.
User messages are on the left, assistant messages on the right.
"""
# Tailwind-like inline styles (no external CSS)
css = """
<style>
.chat-container {padding:12px; border-radius:16px; background:#fafafa; box-shadow:0 1px 3px rgba(0,0,0,.08);}
.model-label {font-weight:600; font-size:14px; margin-bottom:12px; opacity:.8; text-align:center;}
.message {margin:12px 0; display:flex; align-items:flex-start;}
.message.user {justify-content:flex-start;}
.message.assistant {justify-content:flex-end;}
.bubble {max-width:70%; padding:10px 14px; border-radius:18px; word-wrap:break-word;}
.bubble.user {background:#e9eef7; color:#2c3e50; margin-right:auto;}
.bubble.assistant {background:#eaf7ea; color:#2c3e50; margin-left:auto;}
.role-label {font-size:11px; font-weight:500; margin-bottom:4px; opacity:.7;}
.role-label.assistant {text-align:right;}
.bubble pre {background:#f5f5f5; padding:8px; border-radius:4px; overflow-x:auto; margin:8px 0;}
.bubble code {background:#f0f0f0; padding:2px 4px; border-radius:3px; font-family:monospace;}
.bubble p {margin:8px 0;}
.bubble ul, .bubble ol {margin:8px 0; padding-left:20px;}
.bubble blockquote {border-left:3px solid #ddd; padding-left:12px; margin:8px 0; color:#666;}
</style>
"""
body = [f'<div class="chat-container">']
# Only show model label at top for User side
if side_label != "Assistant":
body.append(f'<div class="model-label">{side_label}</div>')
first_assistant_message = True
for m in messages:
role = (m.get("role") or "").lower()
content = str(m.get("content", "")).strip()
if not content:
continue
# Convert markdown to HTML
try:
rendered_content = markdown.markdown(content, extensions=['fenced_code', 'codehilite', 'tables'])
except:
# Fallback to escaped content if markdown rendering fails
rendered_content = html.escape(content)
if role in ("user", "system"):
role_display = "User" if role == "user" else "System"
body.append(f'''
<div class="message user">
<div>
<div class="role-label">{role_display}</div>
<div class="bubble user">{rendered_content}</div>
</div>
</div>
''')
else:
# For assistant messages, include the model name in the first message
if first_assistant_message and side_label == "Assistant":
content = f"{side_label}: {content}"
try:
rendered_content = markdown.markdown(content, extensions=['fenced_code', 'codehilite', 'tables'])
except:
rendered_content = html.escape(content)
first_assistant_message = False
body.append(f'''
<div class="message assistant">
<div>
<div class="role-label assistant">Assistant</div>
<div class="bubble assistant">{rendered_content}</div>
</div>
</div>
''')
body.append("</div>")
return css + "\n".join(body)
def filter_df(model_a_sel: str, model_b_sel: str, lang_sel: str) -> pd.DataFrame:
sub = df
if model_a_sel != "(Any)":
sub = sub[sub["model_a"] == model_a_sel]
if model_b_sel != "(Any)":
sub = sub[sub["model_b"] == model_b_sel]
if "language" in sub.columns and lang_sel != "(Any)":
sub = sub[sub["language"].astype(str) == lang_sel]
return sub.reset_index(drop=True)
def format_row(row: pd.Series) -> Tuple[str, str, str, str, str]:
# Prompt headline = first user message if present
msgs_a = _ensure_messages(row["conversation_a"])
msgs_b = _ensure_messages(row["conversation_b"])
first_user = ""
for m in msgs_a:
if (m.get("role") or "").lower() == "user":
first_user = str(m.get("content", "")).strip()
break
left = _bubble_html(msgs_a, f"Model A: {row['model_a']}")
right = _bubble_html(msgs_b, f"Model B: {row['model_b']}")
# Create a subtle preference footer with soft yellow background
preference_text = _winner_text(row)
footer_html = f"""
<div style="
background: #fff8e1;
color: #5d4037;
padding: 10px 16px;
margin: 12px 0;
border-radius: 6px;
font-weight: 600;
font-size: 14px;
text-align: center;
box-shadow: 0 1px 3px rgba(0,0,0,0.08);
border: 1px solid #ffcc02;
">
{preference_text}
</div>
"""
return "", left, right, footer_html, ""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
gr.Markdown("# Chatbot Arena Battle Viewer (100k)")
gr.Markdown(
"Filter by **Model A**, **Model B**, and **Language**, then browse side-by-side conversations. "
"Data: `lmarena-ai/arena-human-preference-100k`."
)
with gr.Row():
dd_a = gr.Dropdown(models_a, label="Model A", value="(Any)")
dd_b = gr.Dropdown(models_b, label="Model B", value="(Any)")
dd_l = gr.Dropdown(languages, label="Language", value=languages[0])
with gr.Row():
btn_rand = gr.Button("Random match")
btn_prev = gr.Button("◀ Prev")
btn_next = gr.Button("Next ▶")
st_indices = gr.State([])
st_ptr = gr.State(0)
header_md = gr.Markdown()
with gr.Row():
left_html = gr.HTML()
right_html = gr.HTML()
footer_md = gr.HTML()
meta_md = gr.Markdown()
def apply_filters(a, b, l):
sub = filter_df(a, b, l)
idxs = list(range(len(sub)))
ptr = 0 if idxs else -1
if ptr >= 0:
row = sub.iloc[ptr]
head, left, right, foot, meta = format_row(row)
else:
head = left = right = foot = meta = "_No rows match your filters._"
return idxs, ptr, head, left, right, foot, meta
def nav(a, b, l, indices, ptr, direction):
sub = filter_df(a, b, l)
if not len(sub):
return [], -1, "_No rows match your filters._", "", "", "", ""
idxs = list(range(len(sub)))
if ptr is None or ptr < 0 or ptr >= len(sub):
ptr = 0
if direction == "next":
ptr = (ptr + 1) % len(sub)
elif direction == "prev":
ptr = (ptr - 1) % len(sub)
row = sub.iloc[ptr]
head, left, right, foot, meta = format_row(row)
return idxs, ptr, head, left, right, foot, meta
def rand(a, b, l):
sub = filter_df(a, b, l)
if not len(sub):
return [], -1, "_No rows match your filters._", "", "", "", ""
r = random.randrange(len(sub))
row = sub.iloc[r]
head, left, right, foot, meta = format_row(row)
return list(range(len(sub))), r, head, left, right, foot, meta
# Auto-update when dropdowns change
dd_a.change(apply_filters, [dd_a, dd_b, dd_l],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
dd_b.change(apply_filters, [dd_a, dd_b, dd_l],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
dd_l.change(apply_filters, [dd_a, dd_b, dd_l],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
btn_next.click(nav, [dd_a, dd_b, dd_l, st_indices, st_ptr, gr.State("next")],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
btn_prev.click(nav, [dd_a, dd_b, dd_l, st_indices, st_ptr, gr.State("prev")],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
btn_rand.click(rand, [dd_a, dd_b, dd_l],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
gr.on([demo.load], apply_filters, [dd_a, dd_b, dd_l],
[st_indices, st_ptr, header_md, left_html, right_html, footer_md, meta_md])
if __name__ == "__main__":
demo.launch() |