File size: 625 Bytes
9e2cb0a
53d0d3f
709816c
 
211c106
 
ba70565
9e2cb0a
 
 
 
 
 
 
 
 
 
 
dce65c7
9e2cb0a
 
ba70565
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr

from datasets import load_dataset

dataset = load_dataset("zeroshot/twitter-financial-news-sentiment")
dataset
"""
categories = ('Car in good condition','Damaged Car')

def is_car(x) : return x[0].isupper()

def image_classifier(img):
    pred,index,probs = learn.predict(img) 
    return dict(zip(categories, map(float,probs)))

# image = gr.inputs.Image(shape=(192,192))
image = gr.components.Image(shape=(192,192))
label = gr.components.Label()
examples = ['./car.jpg','./crash.jpg','./carf.jpg']

intf = gr.Interface(fn= image_classifier,inputs=image,outputs=label,examples=examples)
intf.launch()"""