File size: 9,173 Bytes
efa947c
 
da792f9
 
 
 
 
efa947c
 
 
9f2350c
efa947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c198e2b
efa947c
c198e2b
efa947c
 
c198e2b
 
efa947c
c198e2b
 
efa947c
 
 
 
 
c198e2b
e64b7eb
c198e2b
 
efa947c
c198e2b
 
efa947c
 
 
 
c198e2b
 
 
 
 
 
 
 
 
efa947c
 
 
 
 
 
 
 
c198e2b
 
efa947c
 
 
 
 
 
 
c198e2b
efa947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5892a3b
57e9be6
5892a3b
 
 
efa947c
5892a3b
efa947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5892a3b
 
 
 
 
 
 
 
 
 
 
 
efa947c
 
 
5892a3b
efa947c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64b7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc7a24
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#--------------------IMPORTED LIBRARIES-----------------------------

import os

os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf'
os.environ['HF_HOME'] = '/tmp/hf'

import streamlit as st
import base64
import json
import faiss
import torch
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
import httpx
from huggingface_hub import hf_hub_download

# ---------------------- INITIAL CONFIGURATION ----------------------

st.set_page_config(page_title="PoliticBot", layout="wide")

with open("fondo.jpeg", "rb") as f:
    img_bytes = f.read()
    encoded_img = base64.b64encode(img_bytes).decode()

st.markdown(f"""
    <style>
    .stApp {{
        background-image: url("data:image/jpeg;base64,{encoded_img}");
        background-size: cover;
        background-repeat: no-repeat;
        background-attachment: scroll;
    }}
    section[data-testid="stSidebar"] {{
        background-color: rgba(0, 0, 50, 0.6);
        color: white;
    }}
    h1, h2, h3, h4, h5, h6, p, label, div, span {{
        color: white !important;
    }}
    textarea {{
        color: white !important;
        background-color: rgba(0, 0, 0, 0.3) !important;
        border: 1px solid #ccc !important;
        border-radius: 8px !important;
        padding: 0.5em !important;
        min-height: 100px !important;
        transition: none !important;
    }}
    ::placeholder {{
        color: #ccc !important;
    }}
    pre, code {{
        background-color: rgba(0, 0, 0, 0.4) !important;
        color: white !important;
        border-radius: 8px !important;
        padding: 0.5em !important;
    }}
    div[data-testid="stExpander"] {{
        transition: none !important;
    }}
    * {{
        transition: none !important;
        animation: none !important;
    }}
    section[data-testid="stSidebar"] div[data-testid="stButton"] > button {{
        background-color: #526366 !important;
        color: white !important;
        font-weight: bold;
        font-size: 16px;
        border-radius: 8px;
        padding: 0.6em;
        width: 80% !important;
        margin-bottom: 0.5em;
    }}
    div[data-testid="stButton"] > button {{
        background-color: #526366 !important;
        color: white !important;
        font-weight: bold;
        font-size: 16px;
        border-radius: 8px;
        padding: 0.6em;
        margin-top: 1em;
    }}
    </style>
""", unsafe_allow_html=True)

# ---------------------- LIBRARIES AND MODELS ----------------------

ideology_families = ["Communism", "Liberalism", "Conservatism", "Fascism", "Radical_Left"]

ideology_keywords = {
    "Communism": ["communism", "marxism", "marxist", "anarcho-communism", "leninism"],
    "Liberalism": ["liberalism", "libertarianism", "classical liberal"],
    "Conservatism": ["conservatism", "traditional conservatism", "neoconservatism"],
    "Fascism": ["fascism", "nazism", "national socialism"],
    "Radical_Left": ["radical left", "far-left", "revolutionary socialism", "anarchism"]
}

@st.cache_resource
def load_encoder():
    model_name = "intfloat/e5-base-v2"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
    return tokenizer, model

tokenizer, model = load_encoder()

def mean_pooling(output, mask):
    token_embeddings = output.last_hidden_state
    input_mask_expanded = mask.unsqueeze(-1).expand(token_embeddings.size())
    return (token_embeddings * input_mask_expanded).sum(1) / input_mask_expanded.sum(1)

def embed_query(query):
    prefixed = f"query: {query}"
    inputs = tokenizer(prefixed, return_tensors='pt', truncation=True, padding=True, max_length=512)
    inputs = {k: v.to(model.device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = model(**inputs)
    pooled = mean_pooling(outputs, inputs["attention_mask"])
    return F.normalize(pooled, p=2, dim=1).cpu().numpy().astype("float32")

@st.cache_resource
def load_data_global():
    chunks_path = hf_hub_download(repo_id="Bartix84/politicbot-data", filename="chunks.jsonl", repo_type="dataset")
    index_path = hf_hub_download(repo_id="Bartix84/politicbot-data", filename="faiss_index.index", repo_type="dataset")
    metadata_path = hf_hub_download(repo_id="Bartix84/politicbot-data", filename="metadata_titles.json", repo_type="dataset")

    index = faiss.read_index(index_path)

    with open(metadata_path, "r", encoding="utf-8") as f:
        metadata = json.load(f)

    with open(chunks_path, "r", encoding="utf-8") as f:
        chunks = [json.loads(line) for line in f]

    return index, metadata, chunks

def search_in_global_index(query_embedding, index, metadata, chunks, selected_ideology, k=5):
    _, indices = index.search(query_embedding, k * 8)
    results = []
    keywords = ideology_keywords.get(selected_ideology, [])
    seen_titles = set()

    for i in range(indices.shape[1]):
        idx = indices[0][i]
        title = metadata[idx]
        if title in seen_titles:
            continue
        seen_titles.add(title)
        match = next((chunk for chunk in chunks if chunk["title"] == title), None)
        if match:
            title_text = title.lower()
            if any(keyword in title_text for keyword in keywords):
                results.append(match)
        if len(results) >= k:
            break
    return results

def generate_rag_response(ideology, user_query, context_chunks):
    context = "\n\n".join(chunk["chunk"] for chunk in context_chunks)[:1500]

    system_prompt = f"You are a political assistant who thinks and reasons like a {ideology} thinker."

    user_prompt = f"""
    Answer the following political or ethical question based strictly on the CONTEXT provided.
    Think according to the principles and values of {ideology}. If the context is insufficient, clearly say so or explain its limitations.
    Avoid always starting your answer the same way. Vary the introduction while staying formal and ideologically grounded.
CONTEXT:
{context}
QUESTION:
{user_query}
ANSWER:"""

    # Verificar si existe la API Key como secreto
    api_key = os.getenv("OPENROUTER_API_KEY")
    if not api_key:
        return "❌ Error: Missing `OPENROUTER_API_KEY` in Hugging Face Space secrets."

    headers = {
        "Authorization": f"Bearer {api_key}",
        "HTTP-Referer": "https://yourappname.streamlit.app",
        "X-Title": "PoliticBot"
    }

    payload = {
        "model": "mistralai/mistral-7b-instruct",
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ],
        "temperature": 0.9,
        "max_tokens": 768,
        "top_p": 0.95
    }

    try:
        response = httpx.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers=headers,
            json=payload,
            timeout=60
        )
        response.raise_for_status()
    except httpx.RequestError as e:
        return f"❌ Connection error: {e}"
    except httpx.HTTPStatusError as e:
        return f"❌ API error: {e.response.status_code} - {e.response.text}"

    return response.json()["choices"][0]["message"]["content"].strip()


# ---------------------- STREAMLIT INTERFACE ----------------------

st.image('portada3.jpg', use_container_width=True)
st.title('🗳️ PoliticBot')
st.subheader('Reasoning with political ideologies')

with st.sidebar:
    st.header("Choose a political ideology")

    if "selected_ideology" not in st.session_state:
        st.session_state.selected_ideology = None

    for ideology in ideology_families:
        if st.button(ideology):
            st.session_state.selected_ideology = ideology

selected_ideology = st.session_state.selected_ideology

if selected_ideology:
    st.write(f"You have selected: **{selected_ideology}**")

user_query = st.text_area("Write your question or political dilemma:", height=100, key="user_input")

if selected_ideology and st.button("Send question"):
    if user_query.strip() == "":
        st.warning("Write a question before continuing.")
    else:
        with st.spinner("Thinking like that ideology..."):
            query_emb = embed_query(user_query + " in the context of " + selected_ideology)
            index, metadata, chunks = load_data_global()
            context = search_in_global_index(query_emb, index, metadata, chunks, selected_ideology, k=5)
            response = generate_rag_response(selected_ideology, user_query, context)

            st.session_state.response = response
            st.session_state.context = context
            st.session_state.last_query = user_query  

if "response" in st.session_state and st.session_state.selected_ideology:
    st.subheader("🤖 Generated response:")
    st.markdown(f"> {st.session_state.response}")

    with st.expander("🌐 Display the context used"):
        context = st.session_state.context
        if not context:
            st.markdown("*No relevant context found.*")
        else:
            for chunk in context:
                st.markdown(f"**{chunk['title']}**")
                st.code(chunk["chunk"][:500] + "...")