from transformers import AutoTokenizer import gradio as gr import os # Retrieve the Hugging Face token from secrets huggingface_token = os.getenv("HUGGINGFACE_TOKEN") def tokenize(input_text): qwen_tokens = len(qwen_tokenizer(input_text, add_special_tokens=True)["input_ids"]) deepseek_tokens = len(deepseek_tokenizer(input_text, add_special_tokens=True)["input_ids"]) results = { "Qwen2.5-0.5B": qwen_tokens, "DeepSeek-R1-Distill-Qwen-1.5B": deepseek_tokens } # Sort the results in descending order based on token length sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True) return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results]) if __name__ == "__main__": qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B", token=huggingface_token) deepseek_tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", token=huggingface_token) iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=19), outputs="text") iface.launch()