Spaces:
Running
Running
File size: 5,291 Bytes
8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea 8575cb5 a255fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
from gradio import ChatMessage
import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
import os
load_dotenv(".env")
HF_TOKEN = os.environ["HF_TOKEN"]
BASE_URL = os.environ["BASE_URL"]
SYSTEM_PROMPT_TEMPLATE = """
You are an AI assistant designed to assist users with a hotel booking and information system. Your role is to provide detailed and accurate information about the hotel, including available accommodations, facilities, dining options, and reservation services. You can check room availability, assist with bookings, modify or cancel reservations, and answer general inquiries about the hotel.
Maintain clarity, conciseness, and relevance in your responses, ensuring a seamless user experience. Always respond in the same **language as the user’s query** to preserve their preferred language.
"""
client = OpenAI(
base_url=BASE_URL + "/v1",
api_key=HF_TOKEN
)
def complation(history, model, tools=None):
system_prompt = SYSTEM_PROMPT_TEMPLATE
messages = [{"role": "system", "content": system_prompt}]
for msg in history:
if type(msg) == dict:
msg = ChatMessage(**msg)
if msg.role == "assistant" and len(msg.options) > 0 and msg.options[0]["label"] == "tool_calls":
tools_calls = json.loads(msg.options[0]["value"])
messages.append({"role": "assistant", "tool_calls": tools_calls})
messages.append({"role": "tool", "content": msg.content})
else:
messages.append({"role": msg.role, "content": msg.content})
if not tools:
return client.chat.completions.create(
model=model,
messages=messages,
stream=True,
max_tokens=1000,
temperature=0.4,
frequency_penalty=1,
# stop=["<|em_end|>"],
extra_body = {
"repetition_penalty": 1.1,
}
)
return client.chat.completions.create(
model=model,
messages=messages,
stream=True,
max_tokens=1000,
temperature=0.4,
tool_choice="auto",
tools=tools,
frequency_penalty=1,
# stop=["<|em_end|>"],
extra_body = {
"repetition_penalty": 1.1,
}
)
def respond(
message:any,
history:any,
):
try:
models = client.models.list()
model = models.data[0].id
except Exception as err:
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
raise err
response = ""
arguments = ""
name = ""
history.append(
ChatMessage(
role="user",
content=message,
)
)
completion = complation(history=history, tools=oitools, model=model)
appended = False
for chunk in completion:
if len(chunk.choices) > 0 and chunk.choices[0].delta.tool_calls and len(chunk.choices[0].delta.tool_calls) > 0 :
call = chunk.choices[0].delta.tool_calls[0]
if call.function.name:
name=call.function.name
if call.function.arguments:
arguments += call.function.arguments
elif chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
if not appended:
history.append(
ChatMessage(
role="assistant",
content="",
)
)
appended = True
history[-1].content = response
yield history[-1]
if not arguments:
arguments = "{}"
if name:
json_arguments = json.loads(arguments)
result = f"💥 Error using tool {name}, tools doesn't exists"
if tools.get(name):
result = str(tools[name].invoke(input=json_arguments))
result = json.dumps({name: result}, ensure_ascii=False)
history.append(
ChatMessage(
role="assistant",
content=result,
metadata= {"title": f"🛠️ Used tool '{name}'"},
options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
)
)
yield history[-1]
completion = complation(history=history, tools=oitools, model=model)
result = ""
appended = False
for chunk in completion:
result += chunk.choices[0].delta.content
if not appended:
history.append(
ChatMessage(
role="assistant",
content="",
)
)
appended = True
history[-1].content = result
yield history[-2:]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
if __name__ == "__main__":
demo = gr.ChatInterface(respond, type="messages")
demo.launch() |