File size: 5,452 Bytes
87d8688
3e11881
b8b5a68
3e11881
 
87d8688
b8b5a68
3e11881
 
b8b5a68
3e11881
b8b5a68
 
 
1b19c76
b8b5a68
87d8688
1b19c76
 
 
 
3e11881
 
1b19c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e11881
 
1b19c76
 
3e11881
 
1b19c76
 
 
 
 
 
 
 
 
3e11881
 
1b19c76
 
 
 
 
 
 
 
 
 
 
 
 
3e11881
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from datetime import datetime

model_id = "BSC-LT/salamandraTA-7b-instruct"

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16
)

languages = sorted([ 'Aragonese', 'Asturian', 'Basque', 'Bulgarian', 'Catalan', 'Valencian', 'Croatian', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian',
             'Finnish', 'French', 'Galician', 'German', 'Greek', 'Hungarian', 'Irish', 'Italian', 'Latvian', 'Lithuanian', 'Maltese', 'Norwegian Bokmål',
             'Norwegian Nynorsk', 'Occitan', 'Aranese', 'Polish', 'Portuguese', 'Romanian', 'Russian', 'Serbian', 'Slovak', 'Slovenian', 'Spanish', 'Swedish',
             'Ukrainian', 'Welsh' ])

@spaces.GPU(duration=120)
def generate_output(task, source, target, input_text, mt_text=None):
    date_string = datetime.today().strftime('%Y-%m-%d')

    if task == "Translation":
        prompt = f"Translate the following text from {source} into {target}.\n{source}: {input_text.strip()} \n{target}:"
    elif task == "Post-editing":
        if not mt_text:
            return "Please provide machine translation (MT) for post-editing.", ""
        prompt = f"Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.\nSource: {input_text.strip()} \nMT: {mt_text.strip()} \nCorrected:"
    elif task == "Document translation":
        prompt = f"Please translate this text from {source} into {target}.\n{source}: {input_text.strip()}\n{target}:"
    elif task == "Grammar checker":
        prompt = f"Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.\nSentence: {input_text.strip()} \nCorrected:"
    elif task == "Named-entity recognition":
        prompt = """Analyse the following tokenized text and mark the tokens containing named entities.
Use the following annotation guidelines with these tags for named entities:
- ORG (Refers to named groups or organizations)
- PER (Refers to individual people or named groups of people)
- LOC (Refers to physical places or natural landmarks)
- MISC (Refers to entities that don't fit into standard categories).
Prepend B- to the first token of a given entity and I- to the remaining ones if they exist.
If a token is not a named entity, label it as O.
Input: """ + str(input_text.strip()) + "\nMarked:"

    messages = [{"role": "user", "content": prompt}]
    final_prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
        date_string=date_string
    )

    inputs = tokenizer(final_prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
    input_length = inputs.input_ids.shape[1]

    output = model.generate(
        input_ids=inputs.input_ids,
        max_new_tokens=512,
        early_stopping=True,
        num_beams=5
    )

    decoded = tokenizer.decode(output[0, input_length:], skip_special_tokens=True).strip()
    return decoded, ""

with gr.Blocks() as demo:
    gr.Markdown("# 🦎 SalamandraTA 7B - Multitask Demo")
    gr.Markdown("Explore the translation, grammar correction, NER and post-editing capabilities of the SalamandraTA 7B model.")

    with gr.Row():
        task_selector = gr.Radio(["Translation", "Document translation", "Post-editing", "Grammar checker", "Named-entity recognition"], value="Translation", label="Select Task")

    with gr.Row():
        source_lang = gr.Dropdown(choices=languages, value="Catalan", label="Source Language")
        target_lang = gr.Dropdown(choices=languages, value="English", label="Target Language")

    input_textbox = gr.Textbox(lines=6, placeholder="Enter source text or token list here", label="Input Text")
    mt_textbox = gr.Textbox(lines=4, placeholder="(Only for Post-editing) Enter machine translation", label="Machine Translation (optional)")
    output_textbox = gr.Textbox(lines=6, label="Output")

    info_label = gr.HTML("")
    translate_btn = gr.Button("Generate")
    translate_btn.click(generate_output, inputs=[task_selector, source_lang, target_lang, input_textbox, mt_textbox], outputs=[output_textbox, info_label])

    gr.Examples(
        examples=[
            ["Translation", "Catalan", "Galician", "Als antics egipcis del període de l'Imperi Nou els fascinaven els monuments dels seus predecessors, que llavors tenien més de mil anys.", ""],
            ["Post-editing", "Catalan", "English", "Rafael Nadal i Maria Magdalena van inspirar a una generació sencera.", "Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way."],
            ["Grammar checker", "Catalan", "", "Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.", ""],
            ["Named-entity recognition", "", "", "['La', 'defensa', 'del', 'antiguo', 'responsable', 'de', 'la', 'RFEF', 'confirma', 'que', 'interpondrá', 'un', 'recurso.']", ""],
            ["Document translation", "English", "Asturian", "President Donald Trump, who campaigned on promises to crack down on illegal immigration, has raised alarms in the U.S. dairy industry...", ""]
        ],
        inputs=[task_selector, source_lang, target_lang, input_textbox, mt_textbox]
    )

if __name__ == "__main__":
    demo.launch()