Spaces:
Sleeping
Sleeping
Update app.py (#1)
Browse files- Update app.py (1b807a05f70700e1b5f655a7671e85c2dd947230)
Co-authored-by: Zheheng Li <Martyr1@users.noreply.huggingface.co>
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
@@ -9,36 +8,37 @@ import boto3
|
|
9 |
import uuid
|
10 |
import io
|
11 |
from glob import glob
|
|
|
12 |
from pipeline.ImgOutlier import detect_outliers
|
13 |
from pipeline.normalization import align_images
|
14 |
|
15 |
-
#
|
16 |
HF_SPACE = os.environ.get('SPACE_ID') is not None
|
17 |
|
18 |
-
# DigitalOcean Spaces
|
19 |
def upload_mask(image, prefix="mask"):
|
20 |
"""
|
21 |
-
|
22 |
-
|
23 |
Args:
|
24 |
-
image: PIL Image
|
25 |
-
prefix:
|
26 |
|
27 |
Returns:
|
28 |
-
|
29 |
"""
|
30 |
try:
|
31 |
-
#
|
32 |
do_key = os.environ.get('DO_SPACES_KEY')
|
33 |
do_secret = os.environ.get('DO_SPACES_SECRET')
|
34 |
do_region = os.environ.get('DO_SPACES_REGION')
|
35 |
do_bucket = os.environ.get('DO_SPACES_BUCKET')
|
36 |
|
37 |
-
#
|
38 |
if not all([do_key, do_secret, do_region, do_bucket]):
|
39 |
-
return "DigitalOcean
|
40 |
|
41 |
-
#
|
42 |
session = boto3.session.Session()
|
43 |
client = session.client('s3',
|
44 |
region_name=do_region,
|
@@ -46,15 +46,15 @@ def upload_mask(image, prefix="mask"):
|
|
46 |
aws_access_key_id=do_key,
|
47 |
aws_secret_access_key=do_secret)
|
48 |
|
49 |
-
#
|
50 |
filename = f"{prefix}_{uuid.uuid4().hex}.png"
|
51 |
|
52 |
-
#
|
53 |
img_byte_arr = io.BytesIO()
|
54 |
image.save(img_byte_arr, format='PNG')
|
55 |
img_byte_arr.seek(0)
|
56 |
|
57 |
-
#
|
58 |
client.upload_fileobj(
|
59 |
img_byte_arr,
|
60 |
do_bucket,
|
@@ -62,13 +62,13 @@ def upload_mask(image, prefix="mask"):
|
|
62 |
ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
|
63 |
)
|
64 |
|
65 |
-
#
|
66 |
url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
|
67 |
return url
|
68 |
|
69 |
except Exception as e:
|
70 |
-
print(f"
|
71 |
-
return f"
|
72 |
|
73 |
# Global Configuration
|
74 |
MODEL_PATHS = {
|
@@ -101,11 +101,11 @@ COLORS = [
|
|
101 |
# Load model function
|
102 |
def load_model(model_path, device="cuda"):
|
103 |
try:
|
104 |
-
#
|
105 |
if HF_SPACE:
|
106 |
-
device = "cpu"
|
107 |
elif not torch.cuda.is_available():
|
108 |
-
device = "cpu"
|
109 |
|
110 |
model = smp.create_model(
|
111 |
"DeepLabV3Plus",
|
@@ -120,30 +120,30 @@ def load_model(model_path, device="cuda"):
|
|
120 |
model.load_state_dict(state_dict)
|
121 |
model.to(device)
|
122 |
model.eval()
|
123 |
-
print(f"
|
124 |
return model
|
125 |
except Exception as e:
|
126 |
-
print(f"
|
127 |
return None
|
128 |
|
129 |
# Load reference vector
|
130 |
def load_reference_vector(vector_path):
|
131 |
try:
|
132 |
if not os.path.exists(vector_path):
|
133 |
-
print(f"
|
134 |
return []
|
135 |
ref_vector = np.load(vector_path)
|
136 |
-
print(f"
|
137 |
return ref_vector
|
138 |
except Exception as e:
|
139 |
-
print(f"
|
140 |
return []
|
141 |
|
142 |
-
# Load reference
|
143 |
def load_reference_images(ref_dir):
|
144 |
try:
|
145 |
if not os.path.exists(ref_dir):
|
146 |
-
print(f"
|
147 |
os.makedirs(ref_dir, exist_ok=True)
|
148 |
return []
|
149 |
|
@@ -157,10 +157,10 @@ def load_reference_images(ref_dir):
|
|
157 |
img = cv2.imread(file)
|
158 |
if img is not None:
|
159 |
reference_images.append(img)
|
160 |
-
print(f"
|
161 |
return reference_images
|
162 |
except Exception as e:
|
163 |
-
print(f"
|
164 |
return []
|
165 |
|
166 |
# Preprocess the image
|
@@ -208,7 +208,6 @@ def create_overlay(image, segmentation_map, alpha=0.5):
|
|
208 |
if image.shape[:2] != segmentation_map.shape[:2]:
|
209 |
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
|
210 |
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
|
211 |
-
|
212 |
# Perform segmentation
|
213 |
def perform_segmentation(model, image_bgr):
|
214 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
@@ -225,18 +224,18 @@ def perform_segmentation(model, image_bgr):
|
|
225 |
# Single image processing
|
226 |
def process_coastal_image(location, input_image):
|
227 |
if input_image is None:
|
228 |
-
return None, None, "
|
229 |
|
230 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
231 |
model = load_model(MODEL_PATHS[location], device)
|
232 |
|
233 |
if model is None:
|
234 |
-
return None, None, f"
|
235 |
|
236 |
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
|
237 |
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
|
238 |
|
239 |
-
outlier_status = "
|
240 |
is_outlier = False
|
241 |
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
242 |
|
@@ -247,35 +246,35 @@ def process_coastal_image(location, input_image):
|
|
247 |
filtered, _ = detect_outliers(ref_images, [image_bgr])
|
248 |
is_outlier = len(filtered) == 0
|
249 |
else:
|
250 |
-
print("
|
251 |
is_outlier = False
|
252 |
|
253 |
-
outlier_status = "
|
254 |
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
|
255 |
|
256 |
-
#
|
257 |
-
url = "
|
258 |
try:
|
259 |
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
|
260 |
except Exception as e:
|
261 |
-
print(f"
|
262 |
-
url = f"
|
263 |
|
264 |
if is_outlier:
|
265 |
-
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'
|
266 |
|
267 |
return seg_map, overlay, analysis, outlier_status, url
|
268 |
|
269 |
-
#
|
270 |
def process_with_alignment(location, reference_image, input_image):
|
271 |
if reference_image is None or input_image is None:
|
272 |
-
return None, None, None, None, "
|
273 |
|
274 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
275 |
model = load_model(MODEL_PATHS[location], device)
|
276 |
|
277 |
if model is None:
|
278 |
-
return None, None, None, None, "
|
279 |
|
280 |
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
|
281 |
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
@@ -284,20 +283,20 @@ def process_with_alignment(location, reference_image, input_image):
|
|
284 |
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
|
285 |
aligned_tgt_bgr = aligned[1]
|
286 |
except Exception as e:
|
287 |
-
print(f"
|
288 |
-
return None, None, None, None, f"
|
289 |
|
290 |
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
|
291 |
|
292 |
-
#
|
293 |
-
url = "
|
294 |
try:
|
295 |
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
|
296 |
except Exception as e:
|
297 |
-
print(f"
|
298 |
-
url = f"
|
299 |
|
300 |
-
status = "
|
301 |
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
|
302 |
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
|
303 |
|
@@ -305,61 +304,59 @@ def process_with_alignment(location, reference_image, input_image):
|
|
305 |
|
306 |
# Create the Gradio interface
|
307 |
def create_interface():
|
308 |
-
#
|
309 |
-
disp_w, disp_h = 683, 512 #
|
310 |
-
|
311 |
-
with gr.Blocks(title="
|
312 |
-
gr.Markdown("""#
|
313 |
|
314 |
-
|
315 |
with gr.Tabs():
|
316 |
-
with gr.TabItem("
|
317 |
with gr.Row():
|
318 |
-
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="
|
319 |
with gr.Row():
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
ovl = gr.Image(label="叠加图像", type="numpy", height=disp_h, width=disp_w)
|
324 |
with gr.Row():
|
325 |
-
btn1 = gr.Button("
|
326 |
-
url1 = gr.Text(label="
|
327 |
-
status1 = gr.HTML(label="
|
328 |
-
res1 = gr.HTML(label="
|
329 |
btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
|
330 |
|
331 |
-
with gr.TabItem("
|
332 |
with gr.Row():
|
333 |
-
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="
|
334 |
with gr.Row():
|
335 |
-
|
336 |
-
|
337 |
-
tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
|
338 |
with gr.Row():
|
339 |
-
btn2 = gr.Button("
|
340 |
with gr.Row():
|
341 |
-
orig = gr.Image(label="
|
342 |
-
aligned = gr.Image(label="
|
343 |
with gr.Row():
|
344 |
-
seg2 = gr.Image(label="
|
345 |
-
ovl2 = gr.Image(label="
|
346 |
-
url2 = gr.Text(label="
|
347 |
-
status2 = gr.HTML(label="
|
348 |
-
res2 = gr.HTML(label="
|
349 |
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
|
350 |
return demo
|
351 |
|
352 |
if __name__ == "__main__":
|
353 |
-
#
|
354 |
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
|
355 |
os.makedirs(path, exist_ok=True)
|
356 |
|
357 |
-
#
|
358 |
for p in MODEL_PATHS.values():
|
359 |
if not os.path.exists(p):
|
360 |
-
print(f"
|
361 |
|
362 |
-
#
|
363 |
do_creds = [
|
364 |
os.environ.get('DO_SPACES_KEY'),
|
365 |
os.environ.get('DO_SPACES_SECRET'),
|
@@ -367,11 +364,10 @@ if __name__ == "__main__":
|
|
367 |
os.environ.get('DO_SPACES_BUCKET')
|
368 |
]
|
369 |
if not all(do_creds):
|
370 |
-
print("
|
371 |
|
372 |
-
#
|
373 |
demo = create_interface()
|
374 |
-
# 在HF环境中使用适当的启动配置
|
375 |
if HF_SPACE:
|
376 |
demo.launch()
|
377 |
else:
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
8 |
import uuid
|
9 |
import io
|
10 |
from glob import glob
|
11 |
+
import os
|
12 |
from pipeline.ImgOutlier import detect_outliers
|
13 |
from pipeline.normalization import align_images
|
14 |
|
15 |
+
# Detect if running inside Hugging Face Spaces
|
16 |
HF_SPACE = os.environ.get('SPACE_ID') is not None
|
17 |
|
18 |
+
# DigitalOcean Spaces upload function
|
19 |
def upload_mask(image, prefix="mask"):
|
20 |
"""
|
21 |
+
Upload segmentation mask image to DigitalOcean Spaces
|
22 |
+
|
23 |
Args:
|
24 |
+
image: PIL Image object
|
25 |
+
prefix: filename prefix
|
26 |
|
27 |
Returns:
|
28 |
+
Public URL of the uploaded file
|
29 |
"""
|
30 |
try:
|
31 |
+
# Get credentials from environment variables
|
32 |
do_key = os.environ.get('DO_SPACES_KEY')
|
33 |
do_secret = os.environ.get('DO_SPACES_SECRET')
|
34 |
do_region = os.environ.get('DO_SPACES_REGION')
|
35 |
do_bucket = os.environ.get('DO_SPACES_BUCKET')
|
36 |
|
37 |
+
# Check if credentials exist
|
38 |
if not all([do_key, do_secret, do_region, do_bucket]):
|
39 |
+
return "DigitalOcean credentials not set"
|
40 |
|
41 |
+
# Create S3 client
|
42 |
session = boto3.session.Session()
|
43 |
client = session.client('s3',
|
44 |
region_name=do_region,
|
|
|
46 |
aws_access_key_id=do_key,
|
47 |
aws_secret_access_key=do_secret)
|
48 |
|
49 |
+
# Generate unique filename
|
50 |
filename = f"{prefix}_{uuid.uuid4().hex}.png"
|
51 |
|
52 |
+
# Convert image to bytes
|
53 |
img_byte_arr = io.BytesIO()
|
54 |
image.save(img_byte_arr, format='PNG')
|
55 |
img_byte_arr.seek(0)
|
56 |
|
57 |
+
# Upload to Spaces
|
58 |
client.upload_fileobj(
|
59 |
img_byte_arr,
|
60 |
do_bucket,
|
|
|
62 |
ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
|
63 |
)
|
64 |
|
65 |
+
# Return public URL
|
66 |
url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
|
67 |
return url
|
68 |
|
69 |
except Exception as e:
|
70 |
+
print(f"Upload failed: {str(e)}")
|
71 |
+
return f"Upload error: {str(e)}"
|
72 |
|
73 |
# Global Configuration
|
74 |
MODEL_PATHS = {
|
|
|
101 |
# Load model function
|
102 |
def load_model(model_path, device="cuda"):
|
103 |
try:
|
104 |
+
# If running inside HF Spaces, default to CPU
|
105 |
if HF_SPACE:
|
106 |
+
device = "cpu"
|
107 |
elif not torch.cuda.is_available():
|
108 |
+
device = "cpu"
|
109 |
|
110 |
model = smp.create_model(
|
111 |
"DeepLabV3Plus",
|
|
|
120 |
model.load_state_dict(state_dict)
|
121 |
model.to(device)
|
122 |
model.eval()
|
123 |
+
print(f"Model loaded successfully: {model_path}")
|
124 |
return model
|
125 |
except Exception as e:
|
126 |
+
print(f"Model loading failed: {e}")
|
127 |
return None
|
128 |
|
129 |
# Load reference vector
|
130 |
def load_reference_vector(vector_path):
|
131 |
try:
|
132 |
if not os.path.exists(vector_path):
|
133 |
+
print(f"Reference vector file not found: {vector_path}")
|
134 |
return []
|
135 |
ref_vector = np.load(vector_path)
|
136 |
+
print(f"Reference vector loaded successfully: {vector_path}")
|
137 |
return ref_vector
|
138 |
except Exception as e:
|
139 |
+
print(f"Reference vector loading failed {vector_path}: {e}")
|
140 |
return []
|
141 |
|
142 |
+
# Load reference images
|
143 |
def load_reference_images(ref_dir):
|
144 |
try:
|
145 |
if not os.path.exists(ref_dir):
|
146 |
+
print(f"Reference image directory not found: {ref_dir}")
|
147 |
os.makedirs(ref_dir, exist_ok=True)
|
148 |
return []
|
149 |
|
|
|
157 |
img = cv2.imread(file)
|
158 |
if img is not None:
|
159 |
reference_images.append(img)
|
160 |
+
print(f"Loaded {len(reference_images)} images from {ref_dir}")
|
161 |
return reference_images
|
162 |
except Exception as e:
|
163 |
+
print(f"Image loading failed {ref_dir}: {e}")
|
164 |
return []
|
165 |
|
166 |
# Preprocess the image
|
|
|
208 |
if image.shape[:2] != segmentation_map.shape[:2]:
|
209 |
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
|
210 |
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
|
|
|
211 |
# Perform segmentation
|
212 |
def perform_segmentation(model, image_bgr):
|
213 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
|
|
224 |
# Single image processing
|
225 |
def process_coastal_image(location, input_image):
|
226 |
if input_image is None:
|
227 |
+
return None, None, "Please upload an image", "Not detected", None
|
228 |
|
229 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
230 |
model = load_model(MODEL_PATHS[location], device)
|
231 |
|
232 |
if model is None:
|
233 |
+
return None, None, f"Error: Failed to load model", "Not detected", None
|
234 |
|
235 |
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
|
236 |
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
|
237 |
|
238 |
+
outlier_status = "Not detected"
|
239 |
is_outlier = False
|
240 |
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
241 |
|
|
|
246 |
filtered, _ = detect_outliers(ref_images, [image_bgr])
|
247 |
is_outlier = len(filtered) == 0
|
248 |
else:
|
249 |
+
print("Warning: No reference images or reference vectors available for outlier detection")
|
250 |
is_outlier = False
|
251 |
|
252 |
+
outlier_status = "Outlier Detection: <span style='color:red;font-weight:bold'>Failed</span>" if is_outlier else "Outlier Detection: <span style='color:green;font-weight:bold'>Passed</span>"
|
253 |
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
|
254 |
|
255 |
+
# Try uploading to DigitalOcean Spaces
|
256 |
+
url = "Local Storage"
|
257 |
try:
|
258 |
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
|
259 |
except Exception as e:
|
260 |
+
print(f"Upload failed: {e}")
|
261 |
+
url = f"Upload error: {str(e)}"
|
262 |
|
263 |
if is_outlier:
|
264 |
+
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>Warning: The image failed outlier detection, the result may be inaccurate!</div>" + analysis
|
265 |
|
266 |
return seg_map, overlay, analysis, outlier_status, url
|
267 |
|
268 |
+
# Spatial Alignment
|
269 |
def process_with_alignment(location, reference_image, input_image):
|
270 |
if reference_image is None or input_image is None:
|
271 |
+
return None, None, None, None, "Please upload both reference and target images", "Not processed", None
|
272 |
|
273 |
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
274 |
model = load_model(MODEL_PATHS[location], device)
|
275 |
|
276 |
if model is None:
|
277 |
+
return None, None, None, None, "Error: Failed to load model", "Not processed", None
|
278 |
|
279 |
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
|
280 |
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
|
|
283 |
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
|
284 |
aligned_tgt_bgr = aligned[1]
|
285 |
except Exception as e:
|
286 |
+
print(f"Spatial alignment failed: {e}")
|
287 |
+
return None, None, None, None, f"Spatial alignment failed: {str(e)}", "Processing failed", None
|
288 |
|
289 |
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
|
290 |
|
291 |
+
# Try uploading to DigitalOcean Spaces
|
292 |
+
url = "Local Storage"
|
293 |
try:
|
294 |
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
|
295 |
except Exception as e:
|
296 |
+
print(f"Upload failed: {e}")
|
297 |
+
url = f"Upload error: {str(e)}"
|
298 |
|
299 |
+
status = "Spatial Alignment: <span style='color:green;font-weight:bold'>Completed</span>"
|
300 |
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
|
301 |
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
|
302 |
|
|
|
304 |
|
305 |
# Create the Gradio interface
|
306 |
def create_interface():
|
307 |
+
# Set unified display size
|
308 |
+
disp_w, disp_h = 683, 512 # Maintain aspect ratio
|
309 |
+
|
310 |
+
with gr.Blocks(title="Coastal Erosion Analysis System") as demo:
|
311 |
+
gr.Markdown("""# Coastal Erosion Analysis System
|
312 |
|
313 |
+
Upload coastal images for analysis, including segmentation and spatial alignment.""")
|
314 |
with gr.Tabs():
|
315 |
+
with gr.TabItem("Single Image Segmentation"):
|
316 |
with gr.Row():
|
317 |
+
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
|
318 |
with gr.Row():
|
319 |
+
inp = gr.Image(label="Input Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
|
320 |
+
seg = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
|
321 |
+
ovl = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
|
|
|
322 |
with gr.Row():
|
323 |
+
btn1 = gr.Button("Run Segmentation")
|
324 |
+
url1 = gr.Text(label="Segmentation Image URL")
|
325 |
+
status1 = gr.HTML(label="Outlier Detection Status")
|
326 |
+
res1 = gr.HTML(label="Analysis Result")
|
327 |
btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
|
328 |
|
329 |
+
with gr.TabItem("Spatial Alignment Segmentation"):
|
330 |
with gr.Row():
|
331 |
+
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
|
332 |
with gr.Row():
|
333 |
+
ref_img = gr.Image(label="Reference Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
|
334 |
+
tgt_img = gr.Image(label="Target Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
|
|
|
335 |
with gr.Row():
|
336 |
+
btn2 = gr.Button("Run Spatial Alignment and Segmentation")
|
337 |
with gr.Row():
|
338 |
+
orig = gr.Image(label="Original Image", type="numpy", height=disp_h, width=disp_w)
|
339 |
+
aligned = gr.Image(label="Aligned Image", type="numpy", height=disp_h, width=disp_w)
|
340 |
with gr.Row():
|
341 |
+
seg2 = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
|
342 |
+
ovl2 = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
|
343 |
+
url2 = gr.Text(label="Segmentation Image URL")
|
344 |
+
status2 = gr.HTML(label="Alignment Status")
|
345 |
+
res2 = gr.HTML(label="Analysis Result")
|
346 |
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
|
347 |
return demo
|
348 |
|
349 |
if __name__ == "__main__":
|
350 |
+
# Create necessary directories
|
351 |
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
|
352 |
os.makedirs(path, exist_ok=True)
|
353 |
|
354 |
+
# Check if model files exist
|
355 |
for p in MODEL_PATHS.values():
|
356 |
if not os.path.exists(p):
|
357 |
+
print(f"Warning: Model file {p} does not exist!")
|
358 |
|
359 |
+
# Check if DigitalOcean credentials exist
|
360 |
do_creds = [
|
361 |
os.environ.get('DO_SPACES_KEY'),
|
362 |
os.environ.get('DO_SPACES_SECRET'),
|
|
|
364 |
os.environ.get('DO_SPACES_BUCKET')
|
365 |
]
|
366 |
if not all(do_creds):
|
367 |
+
print("Warning: Incomplete DigitalOcean Spaces credentials, upload functionality may not work")
|
368 |
|
369 |
+
# Create and launch the interface
|
370 |
demo = create_interface()
|
|
|
371 |
if HF_SPACE:
|
372 |
demo.launch()
|
373 |
else:
|