Jordi Catafal
commited on
Commit
·
ebb30ca
1
Parent(s):
5861022
another try
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/app_minimal.cpython-311.pyc +0 -0
- app.py +10 -34
- app_hybrid_backup.py +189 -0
__pycache__/app.cpython-311.pyc
CHANGED
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
__pycache__/app_minimal.cpython-311.pyc
ADDED
Binary file (6.78 kB). View file
|
|
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from contextlib import asynccontextmanager
|
4 |
from typing import List
|
5 |
import torch
|
6 |
import uvicorn
|
@@ -8,31 +7,11 @@ import uvicorn
|
|
8 |
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
9 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
10 |
|
11 |
-
# Global model cache
|
12 |
models_cache = {}
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
# Models to load on demand
|
17 |
-
ON_DEMAND_MODELS = ["jina", "robertalex", "legal-bert"]
|
18 |
-
|
19 |
-
@asynccontextmanager
|
20 |
-
async def lifespan(app: FastAPI):
|
21 |
-
"""Application lifespan handler for startup and shutdown"""
|
22 |
-
# Startup - load priority models
|
23 |
-
try:
|
24 |
-
global models_cache
|
25 |
-
print(f"Loading startup models: {STARTUP_MODELS}...")
|
26 |
-
models_cache = load_models(STARTUP_MODELS)
|
27 |
-
print(f"Startup models loaded successfully: {list(models_cache.keys())}")
|
28 |
-
yield
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Failed to load startup models: {str(e)}")
|
31 |
-
# Continue anyway - models can be loaded on demand
|
32 |
-
yield
|
33 |
-
finally:
|
34 |
-
# Shutdown - cleanup resources
|
35 |
-
cleanup_memory()
|
36 |
|
37 |
def ensure_model_loaded(model_name: str):
|
38 |
"""Load a specific model on demand if not already loaded"""
|
@@ -53,8 +32,7 @@ def ensure_model_loaded(model_name: str):
|
|
53 |
app = FastAPI(
|
54 |
title="Multilingual & Legal Embedding API",
|
55 |
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
56 |
-
version="3.0.0"
|
57 |
-
lifespan=lifespan
|
58 |
)
|
59 |
|
60 |
# Add CORS middleware to allow cross-origin requests
|
@@ -69,18 +47,19 @@ app.add_middleware(
|
|
69 |
@app.get("/")
|
70 |
async def root():
|
71 |
return {
|
72 |
-
"message": "Multilingual & Legal Embedding API",
|
73 |
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
74 |
"status": "running",
|
75 |
"docs": "/docs",
|
76 |
-
"total_models": 5
|
|
|
77 |
}
|
78 |
|
79 |
@app.post("/embed", response_model=EmbeddingResponse)
|
80 |
async def create_embeddings(request: EmbeddingRequest):
|
81 |
"""Generate embeddings for input texts"""
|
82 |
try:
|
83 |
-
# Load specific model on demand
|
84 |
ensure_model_loaded(request.model)
|
85 |
|
86 |
if not request.texts:
|
@@ -167,18 +146,15 @@ async def list_models():
|
|
167 |
@app.get("/health")
|
168 |
async def health_check():
|
169 |
"""Health check endpoint"""
|
170 |
-
startup_models_loaded = all(model in models_cache for model in STARTUP_MODELS)
|
171 |
all_models_loaded = len(models_cache) == 5
|
172 |
|
173 |
return {
|
174 |
-
"status": "healthy"
|
175 |
-
"startup_models_loaded": startup_models_loaded,
|
176 |
"all_models_loaded": all_models_loaded,
|
177 |
"available_models": list(models_cache.keys()),
|
178 |
-
"startup_models": STARTUP_MODELS,
|
179 |
"on_demand_models": ON_DEMAND_MODELS,
|
180 |
"models_count": len(models_cache),
|
181 |
-
"note":
|
182 |
}
|
183 |
|
184 |
if __name__ == "__main__":
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
3 |
from typing import List
|
4 |
import torch
|
5 |
import uvicorn
|
|
|
7 |
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
8 |
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
9 |
|
10 |
+
# Global model cache - completely on-demand loading
|
11 |
models_cache = {}
|
12 |
|
13 |
+
# All models load on demand to test deployment
|
14 |
+
ON_DEMAND_MODELS = ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def ensure_model_loaded(model_name: str):
|
17 |
"""Load a specific model on demand if not already loaded"""
|
|
|
32 |
app = FastAPI(
|
33 |
title="Multilingual & Legal Embedding API",
|
34 |
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
35 |
+
version="3.0.0"
|
|
|
36 |
)
|
37 |
|
38 |
# Add CORS middleware to allow cross-origin requests
|
|
|
47 |
@app.get("/")
|
48 |
async def root():
|
49 |
return {
|
50 |
+
"message": "Multilingual & Legal Embedding API - Minimal Version",
|
51 |
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
52 |
"status": "running",
|
53 |
"docs": "/docs",
|
54 |
+
"total_models": 5,
|
55 |
+
"note": "All models load on first request"
|
56 |
}
|
57 |
|
58 |
@app.post("/embed", response_model=EmbeddingResponse)
|
59 |
async def create_embeddings(request: EmbeddingRequest):
|
60 |
"""Generate embeddings for input texts"""
|
61 |
try:
|
62 |
+
# Load specific model on demand
|
63 |
ensure_model_loaded(request.model)
|
64 |
|
65 |
if not request.texts:
|
|
|
146 |
@app.get("/health")
|
147 |
async def health_check():
|
148 |
"""Health check endpoint"""
|
|
|
149 |
all_models_loaded = len(models_cache) == 5
|
150 |
|
151 |
return {
|
152 |
+
"status": "healthy",
|
|
|
153 |
"all_models_loaded": all_models_loaded,
|
154 |
"available_models": list(models_cache.keys()),
|
|
|
155 |
"on_demand_models": ON_DEMAND_MODELS,
|
156 |
"models_count": len(models_cache),
|
157 |
+
"note": "All models load on first embedding request - minimal deployment version"
|
158 |
}
|
159 |
|
160 |
if __name__ == "__main__":
|
app_hybrid_backup.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from contextlib import asynccontextmanager
|
4 |
+
from typing import List
|
5 |
+
import torch
|
6 |
+
import uvicorn
|
7 |
+
|
8 |
+
from models.schemas import EmbeddingRequest, EmbeddingResponse, ModelInfo
|
9 |
+
from utils.helpers import load_models, get_embeddings, cleanup_memory
|
10 |
+
|
11 |
+
# Global model cache
|
12 |
+
models_cache = {}
|
13 |
+
|
14 |
+
# Models to load at startup (most frequently used)
|
15 |
+
STARTUP_MODELS = ["jina-v3", "roberta-ca"]
|
16 |
+
# Models to load on demand
|
17 |
+
ON_DEMAND_MODELS = ["jina", "robertalex", "legal-bert"]
|
18 |
+
|
19 |
+
@asynccontextmanager
|
20 |
+
async def lifespan(app: FastAPI):
|
21 |
+
"""Application lifespan handler for startup and shutdown"""
|
22 |
+
# Startup - load priority models
|
23 |
+
try:
|
24 |
+
global models_cache
|
25 |
+
print(f"Loading startup models: {STARTUP_MODELS}...")
|
26 |
+
models_cache = load_models(STARTUP_MODELS)
|
27 |
+
print(f"Startup models loaded successfully: {list(models_cache.keys())}")
|
28 |
+
yield
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Failed to load startup models: {str(e)}")
|
31 |
+
# Continue anyway - models can be loaded on demand
|
32 |
+
yield
|
33 |
+
finally:
|
34 |
+
# Shutdown - cleanup resources
|
35 |
+
cleanup_memory()
|
36 |
+
|
37 |
+
def ensure_model_loaded(model_name: str):
|
38 |
+
"""Load a specific model on demand if not already loaded"""
|
39 |
+
global models_cache
|
40 |
+
if model_name not in models_cache:
|
41 |
+
if model_name in ON_DEMAND_MODELS:
|
42 |
+
try:
|
43 |
+
print(f"Loading model on demand: {model_name}...")
|
44 |
+
new_models = load_models([model_name])
|
45 |
+
models_cache.update(new_models)
|
46 |
+
print(f"Model {model_name} loaded successfully!")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Failed to load model {model_name}: {str(e)}")
|
49 |
+
raise HTTPException(status_code=500, detail=f"Model {model_name} loading failed: {str(e)}")
|
50 |
+
else:
|
51 |
+
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
|
52 |
+
|
53 |
+
app = FastAPI(
|
54 |
+
title="Multilingual & Legal Embedding API",
|
55 |
+
description="Multi-model embedding API for Spanish, Catalan, English and Legal texts",
|
56 |
+
version="3.0.0",
|
57 |
+
lifespan=lifespan
|
58 |
+
)
|
59 |
+
|
60 |
+
# Add CORS middleware to allow cross-origin requests
|
61 |
+
app.add_middleware(
|
62 |
+
CORSMiddleware,
|
63 |
+
allow_origins=["*"], # In production, specify actual domains
|
64 |
+
allow_credentials=True,
|
65 |
+
allow_methods=["*"],
|
66 |
+
allow_headers=["*"],
|
67 |
+
)
|
68 |
+
|
69 |
+
@app.get("/")
|
70 |
+
async def root():
|
71 |
+
return {
|
72 |
+
"message": "Multilingual & Legal Embedding API",
|
73 |
+
"models": ["jina", "robertalex", "jina-v3", "legal-bert", "roberta-ca"],
|
74 |
+
"status": "running",
|
75 |
+
"docs": "/docs",
|
76 |
+
"total_models": 5
|
77 |
+
}
|
78 |
+
|
79 |
+
@app.post("/embed", response_model=EmbeddingResponse)
|
80 |
+
async def create_embeddings(request: EmbeddingRequest):
|
81 |
+
"""Generate embeddings for input texts"""
|
82 |
+
try:
|
83 |
+
# Load specific model on demand if needed
|
84 |
+
ensure_model_loaded(request.model)
|
85 |
+
|
86 |
+
if not request.texts:
|
87 |
+
raise HTTPException(status_code=400, detail="No texts provided")
|
88 |
+
|
89 |
+
if len(request.texts) > 50: # Rate limiting
|
90 |
+
raise HTTPException(status_code=400, detail="Maximum 50 texts per request")
|
91 |
+
|
92 |
+
embeddings = get_embeddings(
|
93 |
+
request.texts,
|
94 |
+
request.model,
|
95 |
+
models_cache,
|
96 |
+
request.normalize,
|
97 |
+
request.max_length
|
98 |
+
)
|
99 |
+
|
100 |
+
# Cleanup memory after large batches
|
101 |
+
if len(request.texts) > 20:
|
102 |
+
cleanup_memory()
|
103 |
+
|
104 |
+
return EmbeddingResponse(
|
105 |
+
embeddings=embeddings,
|
106 |
+
model_used=request.model,
|
107 |
+
dimensions=len(embeddings[0]) if embeddings else 0,
|
108 |
+
num_texts=len(request.texts)
|
109 |
+
)
|
110 |
+
|
111 |
+
except ValueError as e:
|
112 |
+
raise HTTPException(status_code=400, detail=str(e))
|
113 |
+
except Exception as e:
|
114 |
+
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
|
115 |
+
|
116 |
+
@app.get("/models", response_model=List[ModelInfo])
|
117 |
+
async def list_models():
|
118 |
+
"""List available models and their specifications"""
|
119 |
+
return [
|
120 |
+
ModelInfo(
|
121 |
+
model_id="jina",
|
122 |
+
name="jinaai/jina-embeddings-v2-base-es",
|
123 |
+
dimensions=768,
|
124 |
+
max_sequence_length=8192,
|
125 |
+
languages=["Spanish", "English"],
|
126 |
+
model_type="bilingual",
|
127 |
+
description="Bilingual Spanish-English embeddings with long context support"
|
128 |
+
),
|
129 |
+
ModelInfo(
|
130 |
+
model_id="robertalex",
|
131 |
+
name="PlanTL-GOB-ES/RoBERTalex",
|
132 |
+
dimensions=768,
|
133 |
+
max_sequence_length=512,
|
134 |
+
languages=["Spanish"],
|
135 |
+
model_type="legal domain",
|
136 |
+
description="Spanish legal domain specialized embeddings"
|
137 |
+
),
|
138 |
+
ModelInfo(
|
139 |
+
model_id="jina-v3",
|
140 |
+
name="jinaai/jina-embeddings-v3",
|
141 |
+
dimensions=1024,
|
142 |
+
max_sequence_length=8192,
|
143 |
+
languages=["Multilingual"],
|
144 |
+
model_type="multilingual",
|
145 |
+
description="Latest Jina v3 with superior multilingual performance"
|
146 |
+
),
|
147 |
+
ModelInfo(
|
148 |
+
model_id="legal-bert",
|
149 |
+
name="nlpaueb/legal-bert-base-uncased",
|
150 |
+
dimensions=768,
|
151 |
+
max_sequence_length=512,
|
152 |
+
languages=["English"],
|
153 |
+
model_type="legal domain",
|
154 |
+
description="English legal domain BERT model"
|
155 |
+
),
|
156 |
+
ModelInfo(
|
157 |
+
model_id="roberta-ca",
|
158 |
+
name="projecte-aina/roberta-large-ca-v2",
|
159 |
+
dimensions=1024,
|
160 |
+
max_sequence_length=512,
|
161 |
+
languages=["Catalan"],
|
162 |
+
model_type="general",
|
163 |
+
description="Catalan RoBERTa-large model trained on large corpus"
|
164 |
+
)
|
165 |
+
]
|
166 |
+
|
167 |
+
@app.get("/health")
|
168 |
+
async def health_check():
|
169 |
+
"""Health check endpoint"""
|
170 |
+
startup_models_loaded = all(model in models_cache for model in STARTUP_MODELS)
|
171 |
+
all_models_loaded = len(models_cache) == 5
|
172 |
+
|
173 |
+
return {
|
174 |
+
"status": "healthy" if startup_models_loaded else "partial",
|
175 |
+
"startup_models_loaded": startup_models_loaded,
|
176 |
+
"all_models_loaded": all_models_loaded,
|
177 |
+
"available_models": list(models_cache.keys()),
|
178 |
+
"startup_models": STARTUP_MODELS,
|
179 |
+
"on_demand_models": ON_DEMAND_MODELS,
|
180 |
+
"models_count": len(models_cache),
|
181 |
+
"note": f"Startup models: {STARTUP_MODELS} | On-demand: {ON_DEMAND_MODELS}"
|
182 |
+
}
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
# Set multi-threading for CPU
|
186 |
+
torch.set_num_threads(8)
|
187 |
+
torch.set_num_interop_threads(1)
|
188 |
+
|
189 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|