Ashrafb commited on
Commit
fb700c4
·
verified ·
1 Parent(s): 5eb6efc

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +13 -10
main.py CHANGED
@@ -2,10 +2,9 @@ from fastapi import FastAPI, File, UploadFile, Form
2
  from fastapi.responses import StreamingResponse
3
  from fastapi.staticfiles import StaticFiles
4
  import torch
5
- import shutil
6
  import cv2
7
  import numpy as np
8
- import io
9
  from io import BytesIO
10
 
11
  app = FastAPI()
@@ -19,8 +18,6 @@ def load_model():
19
  model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
20
  model.load_model('cartoon4')
21
 
22
- import logging
23
-
24
  # Configure logging
25
  logging.basicConfig(level=logging.INFO)
26
 
@@ -35,11 +32,16 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
35
 
36
  # Convert the uploaded image to numpy array
37
  nparr = np.frombuffer(contents, np.uint8)
38
- frame_rgb = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
39
- logging.info(f"Uploaded image shape: {frame_rgb.shape}")
 
 
 
 
 
40
 
41
  # Process the uploaded image
42
- aligned_face, instyle, message = model.detect_and_align_image(frame_rgb, top, bottom, left, right)
43
  if aligned_face is None or instyle is None:
44
  logging.error("Failed to process the image: No face detected or alignment failed.")
45
  return {"error": message}
@@ -49,7 +51,7 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
49
  logging.error("Failed to toonify the image.")
50
  return {"error": message}
51
 
52
- # Convert BGR to RGB
53
  processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
54
 
55
  # Convert processed image to bytes
@@ -57,11 +59,12 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
57
 
58
  # Return the processed image as a streaming response
59
  return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
 
60
  # Mount static files directory
61
  app.mount("/", StaticFiles(directory="AB", html=True), name="static")
62
 
63
  # Define index route
64
  @app.get("/")
65
  def index():
66
- return FileResponse(path="/app/AB/index.html", media_type="text/html")
67
-
 
2
  from fastapi.responses import StreamingResponse
3
  from fastapi.staticfiles import StaticFiles
4
  import torch
 
5
  import cv2
6
  import numpy as np
7
+ import logging
8
  from io import BytesIO
9
 
10
  app = FastAPI()
 
18
  model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
19
  model.load_model('cartoon4')
20
 
 
 
21
  # Configure logging
22
  logging.basicConfig(level=logging.INFO)
23
 
 
32
 
33
  # Convert the uploaded image to numpy array
34
  nparr = np.frombuffer(contents, np.uint8)
35
+ frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
36
+
37
+ if frame_bgr is None:
38
+ logging.error("Failed to decode the image.")
39
+ return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
40
+
41
+ logging.info(f"Uploaded image shape: {frame_bgr.shape}")
42
 
43
  # Process the uploaded image
44
+ aligned_face, instyle, message = model.detect_and_align_image(frame_bgr, top, bottom, left, right)
45
  if aligned_face is None or instyle is None:
46
  logging.error("Failed to process the image: No face detected or alignment failed.")
47
  return {"error": message}
 
51
  logging.error("Failed to toonify the image.")
52
  return {"error": message}
53
 
54
+ # Convert BGR to RGB for display
55
  processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
56
 
57
  # Convert processed image to bytes
 
59
 
60
  # Return the processed image as a streaming response
61
  return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
62
+
63
  # Mount static files directory
64
  app.mount("/", StaticFiles(directory="AB", html=True), name="static")
65
 
66
  # Define index route
67
  @app.get("/")
68
  def index():
69
+ from fastapi.responses import FileResponse
70
+ return FileResponse(path="/app/AB/index.html", media_type="text/html")