Update main.py
Browse files
main.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1 |
-
|
|
|
|
|
2 |
from fastapi.responses import StreamingResponse, FileResponse
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
-
import torch
|
5 |
-
import cv2
|
6 |
import numpy as np
|
7 |
import logging
|
8 |
from io import BytesIO
|
9 |
import tempfile
|
10 |
-
import
|
|
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
#
|
15 |
model = None
|
|
|
16 |
|
17 |
def load_model():
|
18 |
global model
|
19 |
-
from vtoonify_model import Model
|
20 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
model.load_model('cartoon4')
|
22 |
|
@@ -24,7 +25,7 @@ def load_model():
|
|
24 |
logging.basicConfig(level=logging.INFO)
|
25 |
|
26 |
@app.post("/upload/")
|
27 |
-
async def process_image(file: UploadFile = File(...)
|
28 |
global model
|
29 |
if model is None:
|
30 |
load_model()
|
@@ -32,24 +33,38 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
|
|
32 |
# Read the uploaded image file
|
33 |
contents = await file.read()
|
34 |
|
35 |
-
# Convert the uploaded image to numpy array
|
36 |
nparr = np.frombuffer(contents, np.uint8)
|
37 |
frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
|
38 |
-
|
39 |
if frame_bgr is None:
|
40 |
logging.error("Failed to decode the image.")
|
41 |
return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
|
42 |
|
43 |
logging.info(f"Uploaded image shape: {frame_bgr.shape}")
|
44 |
|
45 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
47 |
-
cv2.imwrite(temp_file.name,
|
48 |
temp_file_path = temp_file.name
|
49 |
|
50 |
try:
|
51 |
-
# Process the
|
52 |
-
aligned_face, instyle, message = model.detect_and_align_image(temp_file_path,
|
53 |
if aligned_face is None or instyle is None:
|
54 |
logging.error("Failed to process the image: No face detected or alignment failed.")
|
55 |
return {"error": message}
|
@@ -67,15 +82,15 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
|
|
67 |
|
68 |
# Return the processed image as a streaming response
|
69 |
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
70 |
-
|
71 |
finally:
|
72 |
# Clean up the temporary file
|
73 |
os.remove(temp_file_path)
|
74 |
|
75 |
# Mount static files directory
|
76 |
-
app.mount("/", StaticFiles(directory="
|
77 |
|
78 |
# Define index route
|
79 |
@app.get("/")
|
80 |
-
def index():
|
81 |
-
return FileResponse(path="/app/
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
from fastapi import FastAPI, File, UploadFile
|
4 |
from fastapi.responses import StreamingResponse, FileResponse
|
5 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
6 |
import numpy as np
|
7 |
import logging
|
8 |
from io import BytesIO
|
9 |
import tempfile
|
10 |
+
from mtcnn import MTCNN
|
11 |
+
from vtoonify_model import Model # Import VToonify model
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
+
# Initialize the VToonify model and MTCNN detector
|
16 |
model = None
|
17 |
+
detector = MTCNN()
|
18 |
|
19 |
def load_model():
|
20 |
global model
|
|
|
21 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
22 |
model.load_model('cartoon4')
|
23 |
|
|
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
|
27 |
@app.post("/upload/")
|
28 |
+
async def process_image(file: UploadFile = File(...)):
|
29 |
global model
|
30 |
if model is None:
|
31 |
load_model()
|
|
|
33 |
# Read the uploaded image file
|
34 |
contents = await file.read()
|
35 |
|
36 |
+
# Convert the uploaded image to a numpy array
|
37 |
nparr = np.frombuffer(contents, np.uint8)
|
38 |
frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
|
39 |
+
|
40 |
if frame_bgr is None:
|
41 |
logging.error("Failed to decode the image.")
|
42 |
return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
|
43 |
|
44 |
logging.info(f"Uploaded image shape: {frame_bgr.shape}")
|
45 |
|
46 |
+
# Convert BGR to RGB for MTCNN
|
47 |
+
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
48 |
+
|
49 |
+
# Detect faces using MTCNN
|
50 |
+
results = detector.detect_faces(frame_rgb)
|
51 |
+
|
52 |
+
if len(results) == 0:
|
53 |
+
logging.error("No faces detected in the image.")
|
54 |
+
return {"error": "No faces detected in the image."}
|
55 |
+
|
56 |
+
# Use the first detected face
|
57 |
+
x, y, width, height = results[0]['box']
|
58 |
+
cropped_face = frame_rgb[y:y+height, x:x+width]
|
59 |
+
|
60 |
+
# Save the cropped face temporarily to pass the file path to the model
|
61 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
62 |
+
cv2.imwrite(temp_file.name, cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR))
|
63 |
temp_file_path = temp_file.name
|
64 |
|
65 |
try:
|
66 |
+
# Process the cropped face using VToonify
|
67 |
+
aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, 0, 0, 0, 0)
|
68 |
if aligned_face is None or instyle is None:
|
69 |
logging.error("Failed to process the image: No face detected or alignment failed.")
|
70 |
return {"error": message}
|
|
|
82 |
|
83 |
# Return the processed image as a streaming response
|
84 |
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
85 |
+
|
86 |
finally:
|
87 |
# Clean up the temporary file
|
88 |
os.remove(temp_file_path)
|
89 |
|
90 |
# Mount static files directory
|
91 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
92 |
|
93 |
# Define index route
|
94 |
@app.get("/")
|
95 |
+
def index() -> FileResponse:
|
96 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|