Update main.py
Browse files
main.py
CHANGED
@@ -1,32 +1,30 @@
|
|
1 |
-
import
|
2 |
-
import cv2
|
3 |
-
from fastapi import FastAPI, File, UploadFile
|
4 |
from fastapi.responses import StreamingResponse, FileResponse
|
5 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
6 |
import numpy as np
|
7 |
import logging
|
8 |
from io import BytesIO
|
9 |
import tempfile
|
10 |
-
|
11 |
-
from vtoonify_model import Model # Import VToonify model
|
12 |
-
import torch
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
#
|
17 |
-
logging.basicConfig(level=logging.INFO)
|
18 |
-
|
19 |
-
# Initialize the VToonify model and MTCNN detector
|
20 |
model = None
|
21 |
-
detector = MTCNN(min_face_size=20, scale_factor=0.709)
|
22 |
|
23 |
def load_model():
|
24 |
global model
|
|
|
25 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
-
model.load_model('
|
|
|
|
|
|
|
27 |
|
28 |
@app.post("/upload/")
|
29 |
-
async def process_image(file: UploadFile = File(...)):
|
30 |
global model
|
31 |
if model is None:
|
32 |
load_model()
|
@@ -34,65 +32,50 @@ async def process_image(file: UploadFile = File(...)):
|
|
34 |
# Read the uploaded image file
|
35 |
contents = await file.read()
|
36 |
|
37 |
-
# Convert the uploaded image to
|
38 |
nparr = np.frombuffer(contents, np.uint8)
|
39 |
frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
|
40 |
-
|
41 |
if frame_bgr is None:
|
42 |
logging.error("Failed to decode the image.")
|
43 |
return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
|
44 |
|
45 |
logging.info(f"Uploaded image shape: {frame_bgr.shape}")
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
# Detect faces using MTCNN
|
51 |
-
results = detector.detect_faces(frame_rgb)
|
52 |
-
logging.info(f"Detection results: {results}")
|
53 |
-
|
54 |
-
if len(results) == 0:
|
55 |
-
logging.error("No faces detected in the image.")
|
56 |
-
return {"error": "No faces detected in the image."}
|
57 |
-
|
58 |
-
# Use the first detected face
|
59 |
-
x, y, width, height = results[0]['box']
|
60 |
-
cropped_face = frame_rgb[y:y+height, x:x+width]
|
61 |
-
|
62 |
-
# Save the cropped face temporarily to pass the file path to the model
|
63 |
-
with tempfile.NamedTemporaryFile(delete=True, suffix=".jpg") as temp_file:
|
64 |
-
cv2.imwrite(temp_file.name, cv2.cvtColor(cropped_face, cv2.COLOR_RGB2BGR))
|
65 |
temp_file_path = temp_file.name
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
|
75 |
-
if processed_image is None:
|
76 |
-
logging.error("Failed to toonify the image.")
|
77 |
-
return {"error": message}
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
|
92 |
# Mount static files directory
|
93 |
-
app.mount("/", StaticFiles(directory="AB", html=True), name="
|
94 |
|
95 |
# Define index route
|
96 |
@app.get("/")
|
97 |
-
def index()
|
98 |
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
|
|
|
|
2 |
from fastapi.responses import StreamingResponse, FileResponse
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
import numpy as np
|
7 |
import logging
|
8 |
from io import BytesIO
|
9 |
import tempfile
|
10 |
+
import os
|
|
|
|
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Load model and necessary components
|
|
|
|
|
|
|
15 |
model = None
|
|
|
16 |
|
17 |
def load_model():
|
18 |
global model
|
19 |
+
from vtoonify_model import Model
|
20 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
+
model.load_model('cartoon4')
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
|
26 |
@app.post("/upload/")
|
27 |
+
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
28 |
global model
|
29 |
if model is None:
|
30 |
load_model()
|
|
|
32 |
# Read the uploaded image file
|
33 |
contents = await file.read()
|
34 |
|
35 |
+
# Convert the uploaded image to numpy array
|
36 |
nparr = np.frombuffer(contents, np.uint8)
|
37 |
frame_bgr = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Read as BGR format by default
|
38 |
+
|
39 |
if frame_bgr is None:
|
40 |
logging.error("Failed to decode the image.")
|
41 |
return {"error": "Failed to decode the image. Please ensure the file is a valid image format."}
|
42 |
|
43 |
logging.info(f"Uploaded image shape: {frame_bgr.shape}")
|
44 |
|
45 |
+
# Save the uploaded image temporarily to pass the file path to the model
|
46 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
47 |
+
cv2.imwrite(temp_file.name, frame_bgr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
temp_file_path = temp_file.name
|
49 |
|
50 |
+
try:
|
51 |
+
# Process the uploaded image using the file path
|
52 |
+
aligned_face, instyle, message = model.detect_and_align_image(temp_file_path, top, bottom, left, right)
|
53 |
+
if aligned_face is None or instyle is None:
|
54 |
+
logging.error("Failed to process the image: No face detected or alignment failed.")
|
55 |
+
return {"error": message}
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1')
|
58 |
+
if processed_image is None:
|
59 |
+
logging.error("Failed to toonify the image.")
|
60 |
+
return {"error": message}
|
61 |
|
62 |
+
# Convert the processed image to RGB before returning
|
63 |
+
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
|
64 |
|
65 |
+
# Convert processed image to bytes
|
66 |
+
_, encoded_image = cv2.imencode('.jpg', processed_image_rgb)
|
67 |
|
68 |
+
# Return the processed image as a streaming response
|
69 |
+
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
70 |
+
|
71 |
+
finally:
|
72 |
+
# Clean up the temporary file
|
73 |
+
os.remove(temp_file_path)
|
74 |
|
75 |
# Mount static files directory
|
76 |
+
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
77 |
|
78 |
# Define index route
|
79 |
@app.get("/")
|
80 |
+
def index():
|
81 |
return FileResponse(path="/app/AB/index.html", media_type="text/html")
|