Update main.py
Browse files
main.py
CHANGED
@@ -19,6 +19,11 @@ def load_model():
|
|
19 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
model.load_model('cartoon4')
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
@app.post("/upload/")
|
23 |
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
24 |
global model
|
@@ -31,10 +36,18 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
|
|
31 |
# Convert the uploaded image to numpy array
|
32 |
nparr = np.frombuffer(contents, np.uint8)
|
33 |
frame_rgb = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
|
|
34 |
|
35 |
# Process the uploaded image
|
36 |
aligned_face, instyle, message = model.detect_and_align_image(frame_rgb, top, bottom, left, right)
|
|
|
|
|
|
|
|
|
37 |
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
|
|
|
|
|
|
|
38 |
|
39 |
# Convert BGR to RGB
|
40 |
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
|
@@ -44,8 +57,6 @@ async def process_image(file: UploadFile = File(...), top: int = Form(...), bott
|
|
44 |
|
45 |
# Return the processed image as a streaming response
|
46 |
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
47 |
-
|
48 |
-
|
49 |
# Mount static files directory
|
50 |
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
51 |
|
|
|
19 |
model = Model(device='cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
model.load_model('cartoon4')
|
21 |
|
22 |
+
import logging
|
23 |
+
|
24 |
+
# Configure logging
|
25 |
+
logging.basicConfig(level=logging.INFO)
|
26 |
+
|
27 |
@app.post("/upload/")
|
28 |
async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)):
|
29 |
global model
|
|
|
36 |
# Convert the uploaded image to numpy array
|
37 |
nparr = np.frombuffer(contents, np.uint8)
|
38 |
frame_rgb = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
39 |
+
logging.info(f"Uploaded image shape: {frame_rgb.shape}")
|
40 |
|
41 |
# Process the uploaded image
|
42 |
aligned_face, instyle, message = model.detect_and_align_image(frame_rgb, top, bottom, left, right)
|
43 |
+
if aligned_face is None or instyle is None:
|
44 |
+
logging.error("Failed to process the image: No face detected or alignment failed.")
|
45 |
+
return {"error": message}
|
46 |
+
|
47 |
processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon4')
|
48 |
+
if processed_image is None:
|
49 |
+
logging.error("Failed to toonify the image.")
|
50 |
+
return {"error": message}
|
51 |
|
52 |
# Convert BGR to RGB
|
53 |
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
|
|
|
57 |
|
58 |
# Return the processed image as a streaming response
|
59 |
return StreamingResponse(BytesIO(encoded_image.tobytes()), media_type="image/jpeg")
|
|
|
|
|
60 |
# Mount static files directory
|
61 |
app.mount("/", StaticFiles(directory="AB", html=True), name="static")
|
62 |
|