Ashrafb commited on
Commit
86c16e5
·
verified ·
1 Parent(s): f46307a

Update vtoonify_model.py

Browse files
Files changed (1) hide show
  1. vtoonify_model.py +105 -77
vtoonify_model.py CHANGED
@@ -8,7 +8,7 @@ from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
8
  import torch
9
  import torch.nn as nn
10
  import numpy as np
11
- import dlib
12
  import cv2
13
  from model.vtoonify import VToonify
14
  from model.bisenet.model import BiSeNet
@@ -51,13 +51,13 @@ class Model():
51
  'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
52
  }
53
 
54
- self.landmarkpredictor = self._create_dlib_landmark_model()
55
  self.parsingpredictor = self._create_parsing_model()
56
  self.pspencoder = self._load_encoder()
57
  self.transform = transforms.Compose([
58
  transforms.ToTensor(),
59
- transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
60
- ])
61
 
62
  self.vtoonify, self.exstyle = self._load_default_model()
63
  self.color_transfer = False
@@ -65,10 +65,11 @@ class Model():
65
  self.video_limit_cpu = 100
66
  self.video_limit_gpu = 300
67
 
68
- @staticmethod
69
- def _create_dlib_landmark_model():
70
- return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO,
71
- 'models/shape_predictor_68_face_landmarks.dat'))
 
72
 
73
  def _create_parsing_model(self):
74
  parsingpredictor = BiSeNet(n_classes=19)
@@ -78,93 +79,118 @@ class Model():
78
  return parsingpredictor
79
 
80
  def _load_encoder(self) -> nn.Module:
81
- style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt')
82
  return load_psp_standalone(style_encoder_path, self.device)
83
 
84
  def _load_default_model(self) -> tuple[torch.Tensor, str]:
85
- vtoonify = VToonify(backbone = 'dualstylegan')
86
  vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
87
  'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
88
  map_location=lambda storage, loc: storage)['g_ema'])
89
  vtoonify.to(self.device)
90
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
91
  exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
92
  with torch.no_grad():
93
  exstyle = vtoonify.zplus2wplus(exstyle)
94
  return vtoonify, exstyle
95
 
96
- def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
97
- if 'illustration' in style_type:
98
- self.color_transfer = True
99
- else:
100
- self.color_transfer = False
101
- if style_type not in self.style_types.keys():
102
- return None, 'Oops, wrong Style Type. Please select a valid model.'
103
- self.style_name = style_type
104
- model_path, ind = self.style_types[style_type]
105
- style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
106
- self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
107
- map_location=lambda storage, loc: storage)['g_ema'])
108
- tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
109
- exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
110
- with torch.no_grad():
111
- exstyle = self.vtoonify.zplus2wplus(exstyle)
112
- return exstyle, 'Model of %s loaded.'%(style_type)
113
-
114
  def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
115
  message = 'Error: no face detected! Please retry or change the photo.'
116
- paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
117
- instyle = None
118
- h, w, scale = 0, 0, 0
119
- if paras is not None:
120
- h,w,top,bottom,left,right,scale = paras
 
 
 
 
121
  H, W = int(bottom-top), int(right-left)
122
  # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
123
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
124
  if scale <= 0.75:
125
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
126
  if scale <= 0.375:
127
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
128
  frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
129
  with torch.no_grad():
130
- I = align_face(frame, self.landmarkpredictor)
131
  if I is not None:
132
  I = self.transform(I).unsqueeze(dim=0).to(self.device)
133
  instyle = self.pspencoder(I)
134
  instyle = self.vtoonify.zplus2wplus(instyle)
135
- message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
136
  else:
137
- frame = np.zeros((256,256,3), np.uint8)
138
  else:
139
- frame = np.zeros((256,256,3), np.uint8)
140
  if return_para:
141
  return frame, instyle, message, w, h, top, bottom, left, right, scale
142
  return frame, instyle, message
143
 
144
- #@torch.inference_mode()
145
- def detect_and_align_image(self, frame_rgb: np.ndarray, top: int, bottom: int, left: int, right: int) -> tuple[np.ndarray, torch.Tensor, str]:
146
- if frame_rgb is None:
147
- return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
- # Convert RGB to BGR
 
 
 
 
150
  frame_bgr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
151
-
152
  return self.detect_and_align(frame_bgr, top, bottom, left, right)
153
 
154
- def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
155
- ) -> tuple[np.ndarray, torch.Tensor, str]:
156
  if video is None:
157
- return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
158
  video_cap = cv2.VideoCapture(video)
159
  if video_cap.get(7) == 0:
160
  video_cap.release()
161
- return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
162
  success, frame = video_cap.read()
163
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
164
  video_cap.release()
165
  return self.detect_and_align(frame, top, bottom, left, right)
166
-
167
- def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
168
  message = 'Error: no face detected! Please retry or change the video.'
169
  instyle = None
170
  if video is None:
@@ -172,7 +198,7 @@ class Model():
172
  video_cap = cv2.VideoCapture(video)
173
  if video_cap.get(7) == 0:
174
  video_cap.release()
175
- return 'default.mp4', instyle, 'Error: fail to load the video.'
176
  num = min(self.video_limit_gpu, int(video_cap.get(7)))
177
  if self.device == 'cpu':
178
  num = min(self.video_limit_cpu, num)
@@ -180,14 +206,14 @@ class Model():
180
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
181
  frame, instyle, message, w, h, top, bottom, left, right, scale = self.detect_and_align(frame, top, bottom, left, right, True)
182
  if instyle is None:
183
- return 'default.mp4', instyle, message
184
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
185
  videoWriter = cv2.VideoWriter('input.mp4', fourcc, video_cap.get(5), (int(right-left), int(bottom-top)))
186
  videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
187
- kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
188
  for i in range(num-1):
189
  success, frame = video_cap.read()
190
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
191
  if scale <= 0.75:
192
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
193
  if scale <= 0.375:
@@ -198,42 +224,40 @@ class Model():
198
  videoWriter.release()
199
  video_cap.release()
200
 
201
- return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left)
202
-
203
- def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
204
- #print(style_type + ' ' + self.style_name)
205
  if instyle is None or aligned_face is None:
206
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
207
  if self.style_name != style_type:
208
- exstyle, _ = self.load_model(style_type)
209
  if exstyle is None:
210
- return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
211
  with torch.no_grad():
212
  if self.color_transfer:
213
  s_w = exstyle
214
  else:
215
  s_w = instyle.clone()
216
- s_w[:,:7] = exstyle[:,:7]
217
 
218
  x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
219
  x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
220
  scale_factor=0.5, recompute_scale_factor=False).detach()
221
  inputs = torch.cat((x, x_p/16.), dim=1)
222
- y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
223
  y_tilde = torch.clamp(y_tilde, -1, 1)
224
- print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
225
- return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
226
-
227
- def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[str, str]:
228
- #print(style_type + ' ' + self.style_name)
229
  if aligned_video is None:
230
- return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
231
  video_cap = cv2.VideoCapture(aligned_video)
232
  if instyle is None or aligned_video is None or video_cap.get(7) == 0:
233
  video_cap.release()
234
  return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
235
  if self.style_name != style_type:
236
- exstyle, _ = self.load_model(style_type)
237
  if exstyle is None:
238
  return 'default.mp4', 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
239
  num = min(self.video_limit_gpu, int(video_cap.get(7)))
@@ -247,18 +271,18 @@ class Model():
247
  batch_frames = []
248
  if video_cap.get(3) != 0:
249
  if self.device == 'cpu':
250
- batch_size = max(1, int(4 * 256* 256/ video_cap.get(3) / video_cap.get(4)))
251
  else:
252
- batch_size = min(max(1, int(4 * 400 * 360/ video_cap.get(3) / video_cap.get(4))), 4)
253
  else:
254
  batch_size = 1
255
- print('*** Toonify using batch size of %d on %dx%d video of %d frames with style of %s'%(batch_size, int(video_cap.get(3)*4), int(video_cap.get(4)*4), num, style_type))
256
  with torch.no_grad():
257
  if self.color_transfer:
258
  s_w = exstyle
259
  else:
260
  s_w = instyle.clone()
261
- s_w[:,:7] = exstyle[:,:7]
262
  for i in range(num):
263
  success, frame = video_cap.read()
264
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
@@ -278,6 +302,10 @@ class Model():
278
 
279
  videoWriter.release()
280
  video_cap.release()
281
- return 'output.mp4', 'Successfully toonify video of %d frames with style of %s'%(num, self.style_name)
282
-
283
 
 
 
 
 
 
 
8
  import torch
9
  import torch.nn as nn
10
  import numpy as np
11
+ import insightface
12
  import cv2
13
  from model.vtoonify import VToonify
14
  from model.bisenet.model import BiSeNet
 
51
  'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
52
  }
53
 
54
+ self.face_detector = self._create_insightface_detector()
55
  self.parsingpredictor = self._create_parsing_model()
56
  self.pspencoder = self._load_encoder()
57
  self.transform = transforms.Compose([
58
  transforms.ToTensor(),
59
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
60
+ ])
61
 
62
  self.vtoonify, self.exstyle = self._load_default_model()
63
  self.color_transfer = False
 
65
  self.video_limit_cpu = 100
66
  self.video_limit_gpu = 300
67
 
68
+ def _create_insightface_detector(self):
69
+ # Initialize InsightFace
70
+ app = insightface.app.FaceAnalysis()
71
+ app.prepare(ctx_id=0, det_size=(640, 640)) # ctx_id=-1 for CPU, 0 for GPU
72
+ return app
73
 
74
  def _create_parsing_model(self):
75
  parsingpredictor = BiSeNet(n_classes=19)
 
79
  return parsingpredictor
80
 
81
  def _load_encoder(self) -> nn.Module:
82
+ style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
83
  return load_psp_standalone(style_encoder_path, self.device)
84
 
85
  def _load_default_model(self) -> tuple[torch.Tensor, str]:
86
+ vtoonify = VToonify(backbone='dualstylegan')
87
  vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
88
  'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
89
  map_location=lambda storage, loc: storage)['g_ema'])
90
  vtoonify.to(self.device)
91
+ tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
92
  exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
93
  with torch.no_grad():
94
  exstyle = vtoonify.zplus2wplus(exstyle)
95
  return vtoonify, exstyle
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
98
  message = 'Error: no face detected! Please retry or change the photo.'
99
+ # Use InsightFace for face detection
100
+ faces = self.face_detector.get(frame)
101
+ if len(faces) > 0:
102
+ face = faces[0]
103
+ bbox = face.bbox.astype(int)
104
+ x, y, w, h = bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]
105
+ top, bottom, left, right = y, y + h, x, x + w
106
+ scale = 1.0 # Adjust scale as needed
107
+ h, w = frame.shape[:2]
108
  H, W = int(bottom-top), int(right-left)
109
  # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
110
+ kernel_1d = np.array([[0.125], [0.375], [0.375], [0.125]])
111
  if scale <= 0.75:
112
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
113
  if scale <= 0.375:
114
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
115
  frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
116
  with torch.no_grad():
117
+ I = align_face(frame, self.face_detector)
118
  if I is not None:
119
  I = self.transform(I).unsqueeze(dim=0).to(self.device)
120
  instyle = self.pspencoder(I)
121
  instyle = self.vtoonify.zplus2wplus(instyle)
122
+ message = 'Successfully rescale the frame to (%d, %d)' % (bottom-top, right-left)
123
  else:
124
+ frame = np.zeros((256, 256, 3), np.uint8)
125
  else:
126
+ frame = np.zeros((256, 256, 3), np.uint8)
127
  if return_para:
128
  return frame, instyle, message, w, h, top, bottom, left, right, scale
129
  return frame, instyle, message
130
 
131
+ # Other methods remain unchanged
132
+ def _create_parsing_model(self):
133
+ parsingpredictor = BiSeNet(n_classes=19)
134
+ parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
135
+ map_location=lambda storage, loc: storage))
136
+ parsingpredictor.to(self.device).eval()
137
+ return parsingpredictor
138
+
139
+ def _load_encoder(self) -> nn.Module:
140
+ style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
141
+ return load_psp_standalone(style_encoder_path, self.device)
142
+
143
+ def _load_default_model(self) -> tuple:
144
+ vtoonify = VToonify(backbone='dualstylegan')
145
+ vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
146
+ 'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
147
+ map_location=lambda storage, loc: storage)['g_ema'])
148
+ vtoonify.to(self.device)
149
+ tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
150
+ exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
151
+ with torch.no_grad():
152
+ exstyle = vtoonify.zplus2wplus(exstyle)
153
+ return vtoonify, exstyle
154
+
155
+ def load_model(self, style_type: str) -> tuple:
156
+ if 'illustration' in style_type:
157
+ self.color_transfer = True
158
+ else:
159
+ self.color_transfer = False
160
+ if style_type not in self.style_types.keys():
161
+ return None, 'Oops, wrong Style Type. Please select a valid model.'
162
+ self.style_name = style_type
163
+ model_path, ind = self.style_types[style_type]
164
+ style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
165
+ self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
166
+ map_location=lambda storage, loc: storage)['g_ema'])
167
+ tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
168
+ exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
169
+ with torch.no_grad():
170
+ exstyle = self.vtoonify.zplus2wplus(exstyle)
171
+ return exstyle, 'Model of %s loaded.' % (style_type)
172
 
173
+ def detect_and_align_image(self, frame_rgb: np.ndarray, top: int, bottom: int, left: int, right: int) -> tuple:
174
+ if frame_rgb is None:
175
+ return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
176
+
177
+ # Convert RGB to BGR
178
  frame_bgr = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR)
 
179
  return self.detect_and_align(frame_bgr, top, bottom, left, right)
180
 
181
+ def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple:
 
182
  if video is None:
183
+ return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
184
  video_cap = cv2.VideoCapture(video)
185
  if video_cap.get(7) == 0:
186
  video_cap.release()
187
+ return np.zeros((256, 256, 3), np.uint8), torch.zeros(1, 18, 512).to(self.device), 'Error: fail to load the video.'
188
  success, frame = video_cap.read()
189
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
190
  video_cap.release()
191
  return self.detect_and_align(frame, top, bottom, left, right)
192
+
193
+ def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple:
194
  message = 'Error: no face detected! Please retry or change the video.'
195
  instyle = None
196
  if video is None:
 
198
  video_cap = cv2.VideoCapture(video)
199
  if video_cap.get(7) == 0:
200
  video_cap.release()
201
+ return 'default.mp4', instyle, 'Error: fail to load the video.'
202
  num = min(self.video_limit_gpu, int(video_cap.get(7)))
203
  if self.device == 'cpu':
204
  num = min(self.video_limit_cpu, num)
 
206
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
207
  frame, instyle, message, w, h, top, bottom, left, right, scale = self.detect_and_align(frame, top, bottom, left, right, True)
208
  if instyle is None:
209
+ return 'default.mp4', instyle, message
210
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
211
  videoWriter = cv2.VideoWriter('input.mp4', fourcc, video_cap.get(5), (int(right-left), int(bottom-top)))
212
  videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
213
+ kernel_1d = np.array([[0.125], [0.375], [0.375], [0.125]])
214
  for i in range(num-1):
215
  success, frame = video_cap.read()
216
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
217
  if scale <= 0.75:
218
  frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
219
  if scale <= 0.375:
 
224
  videoWriter.release()
225
  video_cap.release()
226
 
227
+ return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)' % (bottom-top, right-left)
228
+
229
+ def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
 
230
  if instyle is None or aligned_face is None:
231
+ return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
232
  if self.style_name != style_type:
233
+ exstyle, _ = self.load_model(style_type)
234
  if exstyle is None:
235
+ return np.zeros((256, 256, 3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
236
  with torch.no_grad():
237
  if self.color_transfer:
238
  s_w = exstyle
239
  else:
240
  s_w = instyle.clone()
241
+ s_w[:, :7] = exstyle[:, :7]
242
 
243
  x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
244
  x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
245
  scale_factor=0.5, recompute_scale_factor=False).detach()
246
  inputs = torch.cat((x, x_p/16.), dim=1)
247
+ y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
248
  y_tilde = torch.clamp(y_tilde, -1, 1)
249
+ print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
250
+ return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s' % (self.style_name)
251
+
252
+ def video_toonify(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
 
253
  if aligned_video is None:
254
+ return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
255
  video_cap = cv2.VideoCapture(aligned_video)
256
  if instyle is None or aligned_video is None or video_cap.get(7) == 0:
257
  video_cap.release()
258
  return 'default.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
259
  if self.style_name != style_type:
260
+ exstyle, _ = self.load_model(style_type)
261
  if exstyle is None:
262
  return 'default.mp4', 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
263
  num = min(self.video_limit_gpu, int(video_cap.get(7)))
 
271
  batch_frames = []
272
  if video_cap.get(3) != 0:
273
  if self.device == 'cpu':
274
+ batch_size = max(1, int(4 * 256 * 256 / video_cap.get(3) / video_cap.get(4)))
275
  else:
276
+ batch_size = min(max(1, int(4 * 400 * 360 / video_cap.get(3) / video_cap.get(4))), 4)
277
  else:
278
  batch_size = 1
279
+ print('*** Toonify using batch size of %d on %dx%d video of %d frames with style of %s' % (batch_size, int(video_cap.get(3)*4), int(video_cap.get(4)*4), num, style_type))
280
  with torch.no_grad():
281
  if self.color_transfer:
282
  s_w = exstyle
283
  else:
284
  s_w = instyle.clone()
285
+ s_w[:, :7] = exstyle[:, :7]
286
  for i in range(num):
287
  success, frame = video_cap.read()
288
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 
302
 
303
  videoWriter.release()
304
  video_cap.release()
305
+ return 'output.mp4', 'Successfully toonify video of %d frames with style of %s' % (num, self.style_name)
 
306
 
307
+ def tensor2cv2(self, img):
308
+ """Convert a tensor image to OpenCV format."""
309
+ tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8).copy()
310
+ logging.debug(f"Converted image shape: {tmp.shape}, strides: {tmp.strides}")
311
+ return cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR)