Update vtoonify_model.py
Browse files- vtoonify_model.py +76 -72
vtoonify_model.py
CHANGED
@@ -1,10 +1,4 @@
|
|
1 |
from __future__ import annotations
|
2 |
-
import gradio as gr
|
3 |
-
import pathlib
|
4 |
-
import sys
|
5 |
-
sys.path.insert(0, 'vtoonify')
|
6 |
-
|
7 |
-
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import numpy as np
|
@@ -14,9 +8,7 @@ from model.vtoonify import VToonify
|
|
14 |
from model.bisenet.model import BiSeNet
|
15 |
import torch.nn.functional as F
|
16 |
from torchvision import transforms
|
17 |
-
import gc
|
18 |
import huggingface_hub
|
19 |
-
import os
|
20 |
import logging
|
21 |
from PIL import Image
|
22 |
|
@@ -28,65 +20,43 @@ MODEL_REPO = 'PKUWilliamYang/VToonify'
|
|
28 |
class Model():
|
29 |
def __init__(self, device):
|
30 |
super().__init__()
|
31 |
-
|
32 |
self.device = device
|
33 |
self.style_types = {
|
34 |
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
|
35 |
-
|
36 |
-
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
|
37 |
-
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
|
38 |
-
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
|
39 |
-
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
|
40 |
-
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
|
41 |
-
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
|
42 |
-
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
|
43 |
-
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
|
44 |
-
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
|
45 |
-
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
|
46 |
-
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
|
47 |
-
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
|
48 |
-
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
|
49 |
-
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
|
50 |
-
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
|
51 |
-
'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
|
52 |
-
'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
|
53 |
-
'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
|
54 |
-
'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
|
55 |
-
'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
|
56 |
}
|
57 |
-
|
58 |
self.face_detector = self._create_insightface_detector()
|
59 |
self.parsingpredictor = self._create_parsing_model()
|
60 |
-
self.pspencoder = self._load_encoder()
|
61 |
self.transform = transforms.Compose([
|
62 |
transforms.ToTensor(),
|
63 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
64 |
])
|
65 |
-
|
66 |
self.vtoonify, self.exstyle = self._load_default_model()
|
67 |
self.color_transfer = False
|
68 |
self.style_name = 'cartoon1'
|
69 |
-
|
70 |
-
self.video_limit_gpu = 300
|
71 |
-
|
72 |
def _create_insightface_detector(self):
|
73 |
# Initialize InsightFace
|
74 |
app = insightface.app.FaceAnalysis()
|
75 |
app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640))
|
76 |
return app
|
77 |
-
|
78 |
def _create_parsing_model(self):
|
79 |
parsingpredictor = BiSeNet(n_classes=19)
|
80 |
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
|
81 |
map_location=lambda storage, loc: storage))
|
82 |
parsingpredictor.to(self.device).eval()
|
83 |
return parsingpredictor
|
84 |
-
|
85 |
def _load_encoder(self) -> nn.Module:
|
86 |
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
|
87 |
return load_psp_standalone(style_encoder_path, self.device)
|
88 |
-
|
89 |
-
def _load_default_model(self) -> tuple
|
90 |
vtoonify = VToonify(backbone='dualstylegan')
|
91 |
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
92 |
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
@@ -97,8 +67,8 @@ class Model():
|
|
97 |
with torch.no_grad():
|
98 |
exstyle = vtoonify.zplus2wplus(exstyle)
|
99 |
return vtoonify, exstyle
|
100 |
-
|
101 |
-
def load_model(self, style_type: str) -> tuple
|
102 |
if 'illustration' in style_type:
|
103 |
self.color_transfer = True
|
104 |
else:
|
@@ -115,45 +85,79 @@ class Model():
|
|
115 |
with torch.no_grad():
|
116 |
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
117 |
return exstyle, 'Model of %s loaded.' % (style_type)
|
|
|
118 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
119 |
message = 'Error: no face detected! Please retry or change the photo.'
|
120 |
-
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
121 |
instyle = None
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
137 |
instyle = self.pspencoder(I)
|
138 |
instyle = self.vtoonify.zplus2wplus(instyle)
|
139 |
-
message = 'Successfully
|
140 |
-
|
141 |
-
|
|
|
142 |
else:
|
143 |
-
|
|
|
|
|
144 |
if return_para:
|
145 |
-
return frame, instyle, message
|
146 |
return frame, instyle, message
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
def
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
|
159 |
if instyle is None or aligned_face is None:
|
|
|
1 |
from __future__ import annotations
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import numpy as np
|
|
|
8 |
from model.bisenet.model import BiSeNet
|
9 |
import torch.nn.functional as F
|
10 |
from torchvision import transforms
|
|
|
11 |
import huggingface_hub
|
|
|
12 |
import logging
|
13 |
from PIL import Image
|
14 |
|
|
|
20 |
class Model():
|
21 |
def __init__(self, device):
|
22 |
super().__init__()
|
23 |
+
|
24 |
self.device = device
|
25 |
self.style_types = {
|
26 |
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
|
27 |
+
# Add other styles as needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
}
|
29 |
+
|
30 |
self.face_detector = self._create_insightface_detector()
|
31 |
self.parsingpredictor = self._create_parsing_model()
|
32 |
+
self.pspencoder = self._load_encoder()
|
33 |
self.transform = transforms.Compose([
|
34 |
transforms.ToTensor(),
|
35 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
36 |
])
|
37 |
+
|
38 |
self.vtoonify, self.exstyle = self._load_default_model()
|
39 |
self.color_transfer = False
|
40 |
self.style_name = 'cartoon1'
|
41 |
+
|
|
|
|
|
42 |
def _create_insightface_detector(self):
|
43 |
# Initialize InsightFace
|
44 |
app = insightface.app.FaceAnalysis()
|
45 |
app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640))
|
46 |
return app
|
47 |
+
|
48 |
def _create_parsing_model(self):
|
49 |
parsingpredictor = BiSeNet(n_classes=19)
|
50 |
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
|
51 |
map_location=lambda storage, loc: storage))
|
52 |
parsingpredictor.to(self.device).eval()
|
53 |
return parsingpredictor
|
54 |
+
|
55 |
def _load_encoder(self) -> nn.Module:
|
56 |
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
|
57 |
return load_psp_standalone(style_encoder_path, self.device)
|
58 |
+
|
59 |
+
def _load_default_model(self) -> tuple:
|
60 |
vtoonify = VToonify(backbone='dualstylegan')
|
61 |
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
62 |
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
|
|
67 |
with torch.no_grad():
|
68 |
exstyle = vtoonify.zplus2wplus(exstyle)
|
69 |
return vtoonify, exstyle
|
70 |
+
|
71 |
+
def load_model(self, style_type: str) -> tuple:
|
72 |
if 'illustration' in style_type:
|
73 |
self.color_transfer = True
|
74 |
else:
|
|
|
85 |
with torch.no_grad():
|
86 |
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
87 |
return exstyle, 'Model of %s loaded.' % (style_type)
|
88 |
+
|
89 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
90 |
message = 'Error: no face detected! Please retry or change the photo.'
|
|
|
91 |
instyle = None
|
92 |
+
|
93 |
+
# Use InsightFace for face detection
|
94 |
+
faces = self.face_detector.get(frame)
|
95 |
+
if len(faces) > 0:
|
96 |
+
logging.info(f"Detected {len(faces)} face(s).")
|
97 |
+
face = faces[0]
|
98 |
+
landmarks = face.landmark_2d_106
|
99 |
+
|
100 |
+
# Align face based on mapped landmarks
|
101 |
+
aligned_face = self.align_face(frame, landmarks)
|
102 |
+
if aligned_face is not None:
|
103 |
+
logging.info(f"Aligned face shape: {aligned_face.shape}")
|
104 |
+
with torch.no_grad():
|
105 |
+
I = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
|
|
|
106 |
instyle = self.pspencoder(I)
|
107 |
instyle = self.vtoonify.zplus2wplus(instyle)
|
108 |
+
message = 'Successfully aligned the face.'
|
109 |
+
else:
|
110 |
+
logging.warning("Failed to align face.")
|
111 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
112 |
else:
|
113 |
+
logging.warning("No face detected.")
|
114 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
115 |
+
|
116 |
if return_para:
|
117 |
+
return frame, instyle, message
|
118 |
return frame, instyle, message
|
|
|
|
|
119 |
|
120 |
+
def align_face(self, image, landmarks):
|
121 |
+
# Map InsightFace landmarks to dlib's 68-point model
|
122 |
+
# Example: use specific indices for eyes and mouth
|
123 |
+
eye_left = np.mean(landmarks[36:42], axis=0)
|
124 |
+
eye_right = np.mean(landmarks[42:48], axis=0)
|
125 |
+
mouth_left = landmarks[48]
|
126 |
+
mouth_right = landmarks[54]
|
127 |
+
|
128 |
+
# Calculate transformation parameters
|
129 |
+
eye_center = (eye_left + eye_right) / 2
|
130 |
+
mouth_center = (mouth_left + mouth_right) / 2
|
131 |
+
eye_to_eye = eye_right - eye_left
|
132 |
+
eye_to_mouth = mouth_center - eye_center
|
133 |
+
|
134 |
+
# Define the transformation matrix
|
135 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
136 |
+
x /= np.hypot(*x)
|
137 |
+
x *= np.hypot(*eye_to_eye) * 2.0
|
138 |
+
y = np.flipud(x) * [-1, 1]
|
139 |
+
c = eye_center + eye_to_mouth * 0.1
|
140 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
141 |
+
qsize = np.hypot(*x) * 2
|
142 |
+
|
143 |
+
# Transform and crop the image
|
144 |
+
transform_size = 256
|
145 |
+
output_size = 256
|
146 |
+
img = Image.fromarray(image)
|
147 |
+
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
|
148 |
+
if output_size < transform_size:
|
149 |
+
img = img.resize((output_size, output_size), Image.ANTIALIAS)
|
150 |
+
|
151 |
+
return np.array(img)
|
152 |
+
|
153 |
+
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int) -> tuple:
|
154 |
+
if image is None:
|
155 |
+
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load empty file.'
|
156 |
+
frame = cv2.imread(image)
|
157 |
+
if frame is None:
|
158 |
+
return np.zeros((256, 256, 3), np.uint8), None, 'Error: fail to load the image.'
|
159 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
160 |
+
return self.detect_and_align(frame, top, bottom, left, right)
|
161 |
|
162 |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
|
163 |
if instyle is None or aligned_face is None:
|