File size: 23,785 Bytes
2662656
 
 
 
 
 
 
8cdb327
2662656
 
 
 
 
6b7a41a
2662656
8cdb327
 
 
 
 
6b7a41a
8cdb327
 
 
 
2662656
8cdb327
6b7a41a
2662656
8cdb327
 
 
 
 
 
 
 
 
 
 
6b7a41a
8cdb327
 
 
 
 
6b7a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdb327
 
 
6b7a41a
 
8cdb327
 
 
 
 
 
 
 
 
 
6b7a41a
8cdb327
 
 
 
 
6b7a41a
 
8cdb327
 
6b7a41a
8cdb327
 
 
 
6b7a41a
8cdb327
 
2662656
 
6b7a41a
8cdb327
 
2662656
8cdb327
2662656
 
8cdb327
2662656
8cdb327
 
2662656
 
 
6b7a41a
 
 
 
8cdb327
2662656
8cdb327
 
 
 
 
 
 
 
6b7a41a
8cdb327
6b7a41a
 
8cdb327
6b7a41a
 
 
8cdb327
6b7a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdb327
6b7a41a
 
 
 
 
2662656
6b7a41a
 
8cdb327
6b7a41a
8cdb327
 
 
 
 
 
6b7a41a
 
 
 
 
 
8cdb327
 
6b7a41a
8cdb327
2662656
 
6b7a41a
2662656
 
 
 
 
 
8cdb327
 
2662656
 
 
8cdb327
2662656
 
 
 
 
 
6b7a41a
 
2662656
6b7a41a
2662656
 
 
6b7a41a
 
 
 
2662656
 
 
 
 
6b7a41a
 
 
 
 
2662656
6b7a41a
2662656
 
6b7a41a
 
2662656
6b7a41a
 
 
 
 
 
2662656
 
6b7a41a
 
2662656
 
6b7a41a
2662656
 
6b7a41a
2662656
6b7a41a
2662656
6b7a41a
2662656
 
 
 
6b7a41a
2662656
 
6b7a41a
 
 
2662656
 
 
8cdb327
2662656
8cdb327
2662656
 
 
8cdb327
 
2662656
 
8cdb327
6b7a41a
8cdb327
6b7a41a
2662656
8cdb327
 
 
 
 
 
 
 
 
 
 
 
 
 
6b7a41a
8cdb327
6b7a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662656
8cdb327
6b7a41a
 
 
 
8cdb327
 
6b7a41a
 
8cdb327
 
2662656
8cdb327
2662656
6b7a41a
 
8cdb327
 
6b7a41a
 
 
8cdb327
6b7a41a
 
 
2662656
6b7a41a
 
 
2662656
 
6b7a41a
8cdb327
 
6b7a41a
8cdb327
 
6b7a41a
8cdb327
 
 
6b7a41a
 
 
8cdb327
 
 
 
 
 
 
 
 
 
 
2662656
6b7a41a
 
 
2662656
6b7a41a
 
8cdb327
 
 
 
 
 
 
 
2662656
6b7a41a
8cdb327
2662656
8cdb327
 
 
 
2662656
8cdb327
 
 
6b7a41a
8cdb327
6b7a41a
 
 
8cdb327
6b7a41a
8cdb327
2662656
6b7a41a
8cdb327
 
6b7a41a
 
 
 
8cdb327
 
 
 
 
6b7a41a
8cdb327
 
6b7a41a
 
 
8cdb327
 
6b7a41a
 
 
 
8cdb327
 
2662656
8cdb327
2662656
6b7a41a
2662656
6b7a41a
 
2662656
 
8cdb327
2662656
6b7a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662656
 
6b7a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdb327
 
6b7a41a
 
 
 
 
 
2662656
 
 
6b7a41a
2662656
8cdb327
2662656
 
 
 
8cdb327
 
2662656
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import numpy as np
import json
from datetime import datetime
import logging
import os

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class FixedMultiAgentSystem:
    def __init__(self):
        self.detection_agent = None
        self.counter_speech_agent = None
        self.moderation_agent = None
        self.sentiment_agent = None
        
        # Load prompt configurations with better error handling
        self.counter_speech_prompts = self.load_prompts("counter_speech_prompts.json")
        self.moderation_prompts = self.load_prompts("moderation_prompts.json")
        
        self.initialize_agents()
    
    def load_prompts(self, filename):
        """Load prompts from JSON file with robust fallback"""
        try:
            if os.path.exists(filename):
                with open(filename, 'r', encoding='utf-8') as f:
                    return json.load(f)
            else:
                logger.warning(f"Prompt file {filename} not found, using built-in prompts")
                return self.get_default_prompts(filename)
        except Exception as e:
            logger.error(f"Error loading prompts from {filename}: {e}")
            return self.get_default_prompts(filename)
    
    def get_default_prompts(self, filename):
        """Comprehensive default prompts as fallback"""
        if "counter_speech" in filename:
            return {
                "counter_speech_prompts": {
                    "high_risk": {
                        "system_prompt": "You are an expert educator specializing in counter-speech and conflict de-escalation.",
                        "user_prompt_template": "Generate a respectful, educational counter-speech response to address harmful content while promoting understanding. Original text (Risk: {risk_level}, Confidence: {confidence}%, Sentiment: {sentiment}): \"{original_text}\"\n\nProvide a constructive response that educates without attacking:",
                        "fallback_responses": [
                            "This type of language can cause real harm to individuals and communities. Consider expressing your concerns in a way that respects everyone's dignity and opens constructive dialogue.",
                            "Instead of divisive language, try focusing on shared values and common ground. Everyone deserves respect regardless of their background.",
                            "Strong communities are built on mutual respect and understanding. How can we work together rather than against each other?"
                        ]
                    },
                    "medium_risk": {
                        "fallback_responses": [
                            "This message might be interpreted as harmful by some. Consider rephrasing to express your thoughts more constructively.",
                            "Try framing your message to invite discussion rather than potentially excluding others.",
                            "How might you express this sentiment in a way that brings people together rather than apart?"
                        ]
                    },
                    "low_risk": {
                        "fallback_responses": [
                            "While this seems mostly positive, consider how your words might be received by everyone in the conversation.",
                            "Every interaction is a chance to build understanding and connection.",
                            "Consider how you can use your voice to create an even more welcoming environment."
                        ]
                    },
                    "general_template": {
                        "fallback_responses": [
                            "Thank you for sharing your thoughts. Building strong communities works best when we focus on shared values and constructive dialogue.",
                            "I appreciate your perspective. Sometimes our strongest feelings can be expressed in ways that bring people together.",
                            "Your engagement with this topic is clear. When we channel that energy into inclusive dialogue, we often find solutions that work for everyone."
                        ]
                    }
                }
            }
        else:
            return {
                "moderation_prompts": {
                    "comprehensive_analysis": {
                        "system_prompt": "You are an expert content moderation specialist analyzing text for safety and compliance.",
                        "user_prompt_template": "Analyze this text for potential violations: \"{text}\"\n\nProvide brief analysis: 1) Safety level 2) Main concerns 3) Recommended action\n\nAnalysis:",
                    }
                }
            }
    
    def initialize_agents(self):
        """Initialize all AI agents with proper error handling"""
        logger.info("🤖 Initializing Fixed Multi-Agent System...")
        
        self.setup_detection_agent()
        self.setup_lightweight_agents()
        
        logger.info("✅ All agents initialized successfully!")
    
    def setup_detection_agent(self):
        """Initialize the hate speech detection agent with proper label handling"""
        try:
            logger.info("🔍 Loading Detection Agent (Fine-tuned DistilBERT)...")
            model_path = "./model"
            
            # Load model components
            tokenizer = AutoTokenizer.from_pretrained(model_path)
            model = AutoModelForSequenceClassification.from_pretrained(
                model_path,
                torch_dtype=torch.float32
            )
            
            self.detection_agent = pipeline(
                "text-classification",
                model=model,
                tokenizer=tokenizer,
                return_all_scores=True,
                device=0 if torch.cuda.is_available() else -1
            )
            
            # Test the model to understand its label mapping
            self.test_model_labels()
            
            logger.info("✅ Detection Agent loaded successfully")
            
        except Exception as e:
            logger.error(f"❌ Detection Agent failed: {e}")
            logger.info("🔄 Using fallback detection model...")
            self.detection_agent = pipeline(
                "text-classification",
                model="unitary/toxic-bert",
                return_all_scores=True
            )
            self.model_label_mapping = {"TOXIC": "hate", "NORMAL": "normal"}
    
    def test_model_labels(self):
        """Test model to understand its label mapping"""
        try:
            # Test with obviously safe text
            safe_text = "I love sunny days and happy people."
            results = self.detection_agent(safe_text)
            
            if isinstance(results, list) and len(results) > 0:
                if isinstance(results[0], list):
                    results = results[0]
                
                # Find the label with highest score for safe text
                max_result = max(results, key=lambda x: x['score'])
                safe_label = max_result['label']
                
                # Determine label mapping
                if safe_label in ['LABEL_0', '0']:
                    self.model_label_mapping = {"LABEL_0": "normal", "LABEL_1": "hate"}
                    self.hate_label = "LABEL_1"
                    self.normal_label = "LABEL_0"
                elif safe_label in ['LABEL_1', '1']:
                    self.model_label_mapping = {"LABEL_0": "hate", "LABEL_1": "normal"}
                    self.hate_label = "LABEL_0"
                    self.normal_label = "LABEL_1"
                else:
                    # For models with explicit labels
                    self.model_label_mapping = {safe_label: "normal"}
                    self.normal_label = safe_label
                    # Find the other label
                    other_labels = [r['label'] for r in results if r['label'] != safe_label]
                    if other_labels:
                        self.hate_label = other_labels[0]
                        self.model_label_mapping[self.hate_label] = "hate"
                
                logger.info(f"Model label mapping determined: {self.model_label_mapping}")
                logger.info(f"Normal label: {self.normal_label}, Hate label: {self.hate_label}")
                
        except Exception as e:
            logger.error(f"Error testing model labels: {e}")
            # Default assumption
            self.model_label_mapping = {"LABEL_0": "normal", "LABEL_1": "hate"}
            self.hate_label = "LABEL_1"
            self.normal_label = "LABEL_0"
    
    def setup_lightweight_agents(self):
        """Setup only essential additional agents to reduce load time"""
        try:
            logger.info("📊 Loading Lightweight Sentiment Agent...")
            self.sentiment_agent = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-roberta-base-sentiment-latest",
                return_all_scores=True,
                device=0 if torch.cuda.is_available() else -1
            )
            logger.info("✅ Sentiment Agent loaded")
            
            # Skip heavy FLAN-T5 models for now - use template-based responses
            logger.info("💬 Using template-based counter-speech (fast mode)")
            self.counter_speech_agent = None
            self.moderation_agent = None
            
        except Exception as e:
            logger.error(f"❌ Lightweight agents failed: {e}")
            self.sentiment_agent = None
    
    def detect_hate_speech(self, text):
        """Fixed detection with proper label interpretation"""
        if not text or not text.strip():
            return {
                "status": "❌ Please enter some text to analyze.",
                "prediction": "No input",
                "confidence": 0.0,
                "all_scores": {},
                "risk_level": "Unknown",
                "is_hate_speech": False
            }
        
        try:
            results = self.detection_agent(text.strip())
            
            if isinstance(results, list) and len(results) > 0:
                if isinstance(results[0], list):
                    results = results[0]
                
                all_scores = {}
                hate_score = 0
                normal_score = 0
                
                # Process results with correct label mapping
                for result in results:
                    label = result["label"]
                    score = result["score"]
                    
                    # Map to human-readable labels
                    mapped_label = self.model_label_mapping.get(label, label)
                    all_scores[f"{label} ({mapped_label})"] = {
                        "score": score,
                        "percentage": f"{score*100:.2f}%",
                        "confidence": f"{score:.4f}"
                    }
                    
                    # Track hate vs normal scores
                    if label == getattr(self, 'hate_label', 'LABEL_1'):
                        hate_score = score
                    elif label == getattr(self, 'normal_label', 'LABEL_0'):
                        normal_score = score
                
                # Determine final classification based on hate score
                is_hate_speech = False
                risk_level = "Low"
                predicted_label = "Normal"
                confidence = normal_score
                
                if hate_score > normal_score:
                    # This is likely hate speech
                    confidence = hate_score
                    predicted_label = "Hate Speech"
                    
                    if hate_score > 0.8:
                        is_hate_speech = True
                        risk_level = "High"
                        status = f"🚨 High confidence hate speech detected! (Hate: {hate_score:.2%})"
                    elif hate_score > 0.6:
                        is_hate_speech = True
                        risk_level = "Medium"
                        status = f"⚠️ Potential hate speech detected (Hate: {hate_score:.2%})"
                    else:
                        risk_level = "Low-Medium"
                        status = f"⚡ Low confidence hate detection (Hate: {hate_score:.2%})"
                else:
                    # This is normal/safe content
                    risk_level = "Low"
                    status = f"✅ No hate speech detected (Normal: {normal_score:.2%})"
                
                return {
                    "status": status,
                    "prediction": predicted_label,
                    "confidence": confidence,
                    "all_scores": all_scores,
                    "risk_level": risk_level,
                    "is_hate_speech": is_hate_speech,
                    "hate_score": hate_score,
                    "normal_score": normal_score
                }
                
        except Exception as e:
            logger.error(f"Detection error: {e}")
            return {
                "status": f"❌ Detection error: {str(e)}",
                "prediction": "Error",
                "confidence": 0.0,
                "all_scores": {},
                "risk_level": "Unknown",
                "is_hate_speech": False
            }
    
    def analyze_sentiment(self, text):
        """Fast sentiment analysis"""
        if not self.sentiment_agent or not text.strip():
            return {"sentiment": "neutral", "confidence": 0.0, "all_sentiments": {}}
        
        try:
            results = self.sentiment_agent(text.strip())
            if isinstance(results, list) and len(results) > 0:
                if isinstance(results[0], list):
                    results = results[0]
                
                best_sentiment = max(results, key=lambda x: x['score'])
                return {
                    "sentiment": best_sentiment['label'].lower(),
                    "confidence": best_sentiment['score'],
                    "all_sentiments": {r['label']: r['score'] for r in results}
                }
        except Exception as e:
            logger.error(f"Sentiment analysis error: {e}")
            return {"sentiment": "neutral", "confidence": 0.0, "all_sentiments": {}}
    
    def generate_template_moderation(self, text, detection_result, sentiment_result):
        """Fast template-based moderation analysis"""
        risk_level = detection_result.get("risk_level", "Low").lower()
        confidence = detection_result.get("confidence", 0.0)
        hate_score = detection_result.get("hate_score", 0.0)
        
        if hate_score > 0.8:
            analysis = f"🚨 HIGH RISK: Clear hate speech detected with {confidence:.1%} confidence. Immediate review recommended. Content may violate community standards and could cause harm."
            safety_level = "harmful"
        elif hate_score > 0.6:
            analysis = f"⚠️ MEDIUM RISK: Potentially problematic content detected with {confidence:.1%} confidence. Human review recommended to assess context and intent."
            safety_level = "concerning"
        elif hate_score > 0.3:
            analysis = f"⚡ LOW RISK: Minor concerns detected with {confidence:.1%} confidence. Content appears mostly acceptable but may benefit from user education."
            safety_level = "review_needed"
        else:
            analysis = f"✅ SAFE: No significant violations detected. Content appears to meet community standards with {confidence:.1%} confidence."
            safety_level = "safe"
        
        return {
            "analysis": analysis,
            "confidence": confidence,
            "safety_level": safety_level,
            "method": "template_based_fast"
        }
    
    def generate_template_counter_speech(self, text, detection_result, sentiment_result):
        """Fast template-based counter-speech"""
        if not detection_result.get("is_hate_speech", False):
            return "✨ This text promotes positive communication. Great job maintaining respectful dialogue!"
        
        risk_level = detection_result.get("risk_level", "Low").lower()
        
        # Get appropriate responses from prompts
        counter_config = self.counter_speech_prompts.get("counter_speech_prompts", {})
        
        if risk_level == "high":
            responses = counter_config.get("high_risk", {}).get("fallback_responses", [
                "This type of language can cause real harm. Consider expressing concerns in a way that respects everyone's dignity."
            ])
        elif risk_level == "medium":
            responses = counter_config.get("medium_risk", {}).get("fallback_responses", [
                "This message might be harmful to some. Consider rephrasing to express thoughts more constructively."
            ])
        else:
            responses = counter_config.get("low_risk", {}).get("fallback_responses", [
                "Consider how your words might be received by everyone in the conversation."
            ])
        
        import random
        return f"📝 **Educational Response** ({risk_level.title()} Risk): {random.choice(responses)}"
    
    def comprehensive_analysis(self, text):
        """Fast comprehensive analysis with fixed logic"""
        start_time = datetime.now()
        
        # Run core analysis
        detection_result = self.detect_hate_speech(text)
        sentiment_result = self.analyze_sentiment(text)
        
        # Run fast template-based analysis
        moderation_result = self.generate_template_moderation(text, detection_result, sentiment_result)
        counter_speech = self.generate_template_counter_speech(text, detection_result, sentiment_result)
        
        processing_time = (datetime.now() - start_time).total_seconds()
        
        return {
            "detection": detection_result,
            "sentiment": sentiment_result,
            "moderation": moderation_result,
            "counter_speech": counter_speech,
            "processing_time": processing_time,
            "timestamp": datetime.now().isoformat()
        }

# Initialize the fixed system
logger.info("🚀 Starting Fixed Multi-Agent System...")
agent_system = FixedMultiAgentSystem()

def analyze_text_fixed(text):
    """Fixed analysis function with proper logic"""
    if not text or not text.strip():
        return (
            "❌ Please enter some text to analyze.",
            {},
            "No analysis performed.",
            "No input provided",
            {}
        )
    
    # Run fixed analysis
    results = agent_system.comprehensive_analysis(text)
    
    # Extract results for display
    detection_status = results["detection"]["status"]
    detection_scores = results["detection"]["all_scores"]
    counter_speech = results["counter_speech"]
    
    # Create detailed agent summary
    agent_summary = f"""
🔍 **Detection Agent**: {results['detection']['risk_level']} risk ({results['detection']['confidence']:.2%} confidence)
   ↳ Hate Score: {results['detection'].get('hate_score', 0):.2%} | Normal Score: {results['detection'].get('normal_score', 0):.2%}
📊 **Sentiment Agent**: {results['sentiment']['sentiment'].title()} ({results['sentiment']['confidence']:.2%} confidence)
🛡️ **Moderation Agent**: {results['moderation']['safety_level'].title()} ({results['moderation']['method']})
💬 **Counter-Speech Agent**: Template-based response system
⚡ **Processing Time**: {results['processing_time']:.2f} seconds (Fixed & Optimized)

📋 **Quick Analysis**: {results['moderation']['analysis'][:150]}...
"""
    
    # Compile comprehensive data
    all_agent_data = {
        "Detection_Analysis": {
            "corrected_scores": detection_scores,
            "hate_score": results['detection'].get('hate_score', 0),
            "normal_score": results['detection'].get('normal_score', 0),
            "final_prediction": results['detection']['prediction'],
            "risk_level": results['detection']['risk_level'],
            "is_hate_speech": results['detection']['is_hate_speech']
        },
        "Sentiment_Analysis": {
            "primary_sentiment": results['sentiment']['sentiment'],
            "all_sentiments": results['sentiment'].get('all_sentiments', {})
        },
        "Moderation_Analysis": {
            "safety_level": results['moderation']['safety_level'],
            "analysis": results['moderation']['analysis'],
            "method": results['moderation']['method']
        },
        "System_Info": {
            "mode": "Fixed & Optimized",
            "processing_time_seconds": results['processing_time'],
            "timestamp": results['timestamp'],
            "model_labels": getattr(agent_system, 'model_label_mapping', {})
        }
    }
    
    return detection_status, detection_scores, counter_speech, agent_summary, all_agent_data

# Create the fixed interface
with gr.Blocks(
    title="Fixed Multi-Agent Hate Speech Detection",
    theme=gr.themes.Soft()
) as demo:
    
    
    
    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(
                label="Enter text for fixed multi-agent analysis",
                placeholder="Test the fixed system with any text...",
                lines=4
            )
            
            with gr.Row():
                analyze_btn = gr.Button("🔧 Run Fixed Analysis", variant="primary", size="lg")
                clear_btn = gr.Button("🗑️ Clear", variant="secondary")
            
            gr.Examples(
                examples=[
                    ["The diversity in our group makes our discussions much richer and more meaningful."],
                    ["I love collaborating with people from different backgrounds."],
                    ["This is a wonderful day to learn something new!"],
                    ["Thank you for sharing your perspective with us."],
                    ["Let's work together to build something amazing."]
                ],
                inputs=text_input,
                label="📝 Test with these examples (should show as SAFE):"
            )
    
    with gr.Row():
        with gr.Column():
            detection_output = gr.Textbox(
                label="🎯 Fixed Detection Result",
                interactive=False,
                lines=3
            )
            
            agent_summary = gr.Textbox(
                label="🔧 Fixed Agent Summary",
                interactive=False,
                lines=8
            )
            
        with gr.Column():
            counter_speech_output = gr.Textbox(
                label="💬 Counter-Speech Response",
                interactive=False,
                lines=4
            )
    
    with gr.Row():
        all_agents_output = gr.JSON(
            label="📊 Complete Fixed Analysis Data",
            visible=True
        )
    
    
    # Event handlers
    analyze_btn.click(
        fn=analyze_text_fixed,
        inputs=text_input,
        outputs=[detection_output, all_agents_output, counter_speech_output, agent_summary, all_agents_output]
    )
    
    clear_btn.click(
        fn=lambda: ("", "", "", "", {}),
        outputs=[text_input, detection_output, counter_speech_output, agent_summary, all_agents_output]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_api=False,
        share=False
    )