Spaces:
Runtime error
Runtime error
File size: 8,126 Bytes
d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 8d977b7 e28b51d d110ed4 e28b51d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
AutoModelForImageSegmentation,
DepthProImageProcessorFast,
DepthProForDepthEstimation,
)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
# Set higher precision for matmul if desired
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()
# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
transforms.Resize(seg_image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()
# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
"""
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
to the background while keeping the foreground sharp.
Returns:
- final segmented and blurred image (PIL Image)
- segmentation mask (PIL Image)
- blurred background image (PIL Image) [optional display]
"""
# Resize input for segmentation processing
imageResized = input_image.resize(seg_image_size)
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
with torch.no_grad():
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Convert predicted mask to a PIL image and resize to original input size
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(input_image.size)
# Create a binary mask (convert to grayscale, then threshold)
mask_np = np.array(mask.convert("L"))
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Convert the resized image to an OpenCV BGR array
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
# Create the inverse mask and convert to 3 channels
maskInv = cv2.bitwise_not(maskBinary)
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
# Extract the foreground and background separately
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
background = cv2.bitwise_and(blurredBg, maskInv3)
# Combine the two components
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
finalImg_pil = Image.fromarray(finalImg)
blurredBg_pil = Image.fromarray(cv2.cvtColor(blurredBg, cv2.COLOR_BGR2RGB))
return finalImg_pil, mask, blurredBg_pil
# -----------------------------
# Define the Depth-Based Lens Blur Effect
# -----------------------------
def lens_blur_effect(input_image: Image.Image):
"""
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
by precomputing three versions of the image (foreground, middleground, background)
with increasing blur. Regions are blended based on the estimated depth.
Returns:
- Depth map (PIL Image)
- Final lens-blurred image (PIL Image)
- Foreground mask (PIL Image)
- Middleground mask (PIL Image)
- Background mask (PIL Image)
"""
# Process the image with the depth estimation model
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
post_processed_output = depth_processor.post_process_depth_estimation(
outputs, target_sizes=[(input_image.height, input_image.width)]
)
depth = post_processed_output[0]["predicted_depth"]
# Normalize depth to [0, 255]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth_map = depth.astype(np.uint8)
depthImg = Image.fromarray(depth_map)
# Convert input image to OpenCV BGR format
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
# Precompute three blurred versions of the image
img_foreground = img.copy() # No blur for foreground
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
# Define depth thresholds (using 1/3 and 2/3 of 255)
threshold1 = 255 / 3 # ~85
threshold2 = 2 * 255 / 3 # ~170
# Create masks for the three regions based on depth
mask_fg = (depth_map < threshold1).astype(np.float32)
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
mask_bg = (depth_map >= threshold2).astype(np.float32)
# Expand masks to 3 channels to match image dimensions
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
# Combine the images using the masks (vectorized blending)
final_img = (img_foreground * mask_fg_3 +
img_middleground * mask_mg_3 +
img_background * mask_bg_3).astype(np.uint8)
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
lensBlurImage = Image.fromarray(final_img_rgb)
# Create mask images (scaled to 0-255)
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img
# -----------------------------
# Gradio App: Process Image and Display Multiple Effects
# -----------------------------
def process_image(input_image: Image.Image):
"""
Processes the uploaded image to generate:
1. Segmentation-based Gaussian blur effect.
2. Segmentation mask.
3. Depth map.
4. Depth-based lens blur effect.
5. Depth-based masks for foreground, middleground, and background.
"""
seg_blur, seg_mask, _ = segmentation_blur_effect(input_image)
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(input_image)
return (
seg_blur,
seg_mask,
depth_map_img,
lens_blur_img,
mask_fg_img,
mask_mg_img,
mask_bg_img
)
title = "Blur Effects: Gaussian Blur & Depth-Based Lens Blur"
description = (
"Upload an image to apply two distinct effects:\n\n"
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
"Outputs include the blurred image, segmentation mask, depth map, lens-blurred image, and depth masks."
)
demo = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=[
gr.Image(type="pil", label="Segmentation-Based Blur"),
gr.Image(type="pil", label="Segmentation Mask"),
gr.Image(type="pil", label="Depth Map"),
gr.Image(type="pil", label="Depth-Based Lens Blur"),
gr.Image(type="pil", label="Foreground Depth Mask"),
gr.Image(type="pil", label="Middleground Depth Mask"),
gr.Image(type="pil", label="Background Depth Mask")
],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|