Spaces:
Runtime error
Runtime error
File size: 8,682 Bytes
d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d 9b7d147 e28b51d d110ed4 e28b51d d110ed4 e28b51d 9b7d147 d110ed4 9b7d147 e28b51d 9b7d147 e28b51d d110ed4 e28b51d d110ed4 9b7d147 d110ed4 9b7d147 d110ed4 e28b51d 9b7d147 d110ed4 e28b51d d110ed4 9b7d147 e28b51d 246a819 e28b51d 246a819 e28b51d 246a819 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 9b7d147 d110ed4 e18a03c d110ed4 246a819 d110ed4 9b7d147 e28b51d d110ed4 9b7d147 e28b51d 246a819 e28b51d d110ed4 e28b51d 9b7d147 e28b51d d110ed4 e28b51d 246a819 d110ed4 e28b51d 246a819 e28b51d 9b7d147 246a819 e28b51d d110ed4 246a819 d110ed4 e28b51d 246a819 d110ed4 8d977b7 e28b51d 246a819 e2980eb 246a819 e28b51d d110ed4 e28b51d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
AutoModelForImageSegmentation,
DepthProImageProcessorFast,
DepthProForDepthEstimation,
)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()
# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
transforms.Resize(seg_image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()
# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
"""
Creates a segmentation mask using RMBG-2.0 and applies a Gaussian blur (sigma=15)
to the background while keeping the foreground sharp.
"""
# Resize input image for segmentation processing
imageResized = input_image.resize(seg_image_size)
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
with torch.no_grad():
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Convert predicted mask to a PIL image and ensure it matches imageResized's size
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(imageResized.size)
# Convert mask to grayscale and threshold to create a binary mask
mask_np = np.array(mask.convert("L"))
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Convert the resized image to an OpenCV BGR array
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
# Apply Gaussian blur (sigmaX=15, sigmaY=15)
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
# Create the inverse mask and convert it to 3 channels
maskInv = cv2.bitwise_not(maskBinary)
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
# Extract the foreground and background using the mask
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
background = cv2.bitwise_and(blurredBg, maskInv3)
# Combine foreground and background; convert back to RGB for display
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
finalImg_pil = Image.fromarray(finalImg)
return finalImg_pil, mask
# -----------------------------
# Define the Depth-Based Lens Blur Effect with Slider-Controlled Thresholds
# -----------------------------
def lens_blur_effect(input_image: Image.Image, fg_threshold: float = 85, mg_threshold: float = 170):
"""
Uses DepthPro to estimate a depth map and applies a dynamic lens blur effect
by blending three versions of the image with increasing blur levels.
Parameters:
input_image: The original PIL image.
fg_threshold: Foreground threshold (0-255). Pixels with depth below this are considered foreground.
mg_threshold: Middleground threshold (0-255). Pixels with depth between fg_threshold and mg_threshold are middleground.
Returns:
depthImg: The computed depth map (PIL Image).
lensBlurImage: The final lens-blurred image (PIL Image).
mask_fg_img: Foreground depth mask.
mask_mg_img: Middleground depth mask.
mask_bg_img: Background depth mask.
"""
# Process the image with the depth estimation model
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
post_processed_output = depth_processor.post_process_depth_estimation(
outputs, target_sizes=[(input_image.height, input_image.width)]
)
depth = post_processed_output[0]["predicted_depth"]
# Normalize depth to [0, 255]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth_map = depth.astype(np.uint8)
depthImg = Image.fromarray(depth_map)
# Convert input image to OpenCV BGR format
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
# Precompute blurred versions for different depth regions
img_foreground = img.copy() # No blur for foreground
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
print(depth_map)
depth_map /= depth_map.max()
# Use slider values as thresholds
threshold1 = fg_threshold # e.g., default 85
threshold2 = mg_threshold # e.g., default 170
# Create masks for foreground, middleground, and background based on depth
mask_fg = (depth_map < threshold1).astype(np.float32)
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
mask_bg = (depth_map >= threshold2).astype(np.float32)
# Expand masks to 3 channels
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
# Blend the images using the masks
final_img = (img_foreground * mask_fg_3 +
img_middleground * mask_mg_3 +
img_background * mask_bg_3).astype(np.uint8)
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
lensBlurImage = Image.fromarray(final_img_rgb)
# Create mask images for display (scaled to 0-255)
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img
# -----------------------------
# Gradio App: Process Image and Display Multiple Effects
# -----------------------------
def process_image(input_image: Image.Image, fg_threshold: float, mg_threshold: float):
"""
Processes the uploaded image to generate:
1. Segmentation-based Gaussian blur effect.
2. Segmentation mask.
3. Depth map.
4. Depth-based lens blur effect.
5. Depth masks for foreground, middleground, and background.
The depth thresholds for foreground and middleground regions are adjustable via sliders.
"""
seg_blur, seg_mask = segmentation_blur_effect(input_image)
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(
input_image, fg_threshold, mg_threshold
)
return (
seg_blur,
seg_mask,
depth_map_img,
lens_blur_img,
mask_fg_img,
mask_mg_img,
mask_bg_img
)
title = "Blur Effects: Gaussian & Depth-Based Lens Blur with Adjustable Depth Thresholds"
description = (
"Upload an image to apply two distinct effects:\n\n"
"1. A segmentation-based Gaussian blur that blurs the background (using RMBG-2.0).\n"
"2. A depth-based lens blur effect that simulates realistic lens blur based on depth (using DepthPro).\n\n"
"Use the sliders to adjust the foreground and middleground depth thresholds."
)
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.33, label="Foreground Depth Threshold"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.66, label="Middleground Depth Threshold")
],
outputs=[
gr.Image(type="pil", label="Segmentation-Based Blur"),
gr.Image(type="pil", label="Segmentation Mask"),
gr.Image(type="pil", label="Depth Map"),
gr.Image(type="pil", label="Depth-Based Lens Blur"),
gr.Image(type="pil", label="Foreground Depth Mask"),
gr.Image(type="pil", label="Middleground Depth Mask"),
gr.Image(type="pil", label="Background Depth Mask")
],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|