Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import argparse | |
import numpy as np | |
from PIL import Image | |
from skimage import io | |
from models.ormbg import ORMBG | |
import torch.nn.functional as F | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description="Remove background from images using ORMBG model." | |
) | |
parser.add_argument( | |
"--image", | |
type=str, | |
default=os.path.join("examples", "image", "example01.jpeg"), | |
help="Path to the input image file.", | |
) | |
parser.add_argument( | |
"--output", | |
type=str, | |
default=os.path.join("example01_no_background.png"), | |
help="Path to the output image file.", | |
) | |
parser.add_argument( | |
"--model-path", | |
type=str, | |
default=os.path.join("models", "ormbg.pth"), | |
help="Path to the model file.", | |
) | |
parser.add_argument( | |
"--compare", | |
action="store_false", | |
help="Flag to save the original and processed images side by side.", | |
) | |
return parser.parse_args() | |
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: | |
if len(im.shape) < 3: | |
im = im[:, :, np.newaxis] | |
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = F.interpolate( | |
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" | |
).type(torch.uint8) | |
image = torch.divide(im_tensor, 255.0) | |
return image | |
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: | |
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) | |
im_array = np.squeeze(im_array) | |
return im_array | |
def inference(args): | |
image_path = args.image | |
result_name = args.output | |
model_path = args.model_path | |
compare = args.compare | |
net = ORMBG() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
net.load_state_dict(torch.load(model_path)) | |
net = net.cuda() | |
else: | |
net.load_state_dict(torch.load(model_path, map_location="cpu")) | |
net.eval() | |
model_input_size = [1024, 1024] | |
orig_im = io.imread(image_path) | |
orig_im_size = orig_im.shape[0:2] | |
image = preprocess_image(orig_im, model_input_size).to(device) | |
result = net(image) | |
# post process | |
result_image = postprocess_image(result[0][0], orig_im_size) | |
# save result | |
pil_im = Image.fromarray(result_image) | |
if pil_im.mode == "RGBA": | |
pil_im = pil_im.convert("RGB") | |
no_bg_image = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
orig_image = Image.open(image_path) | |
no_bg_image.paste(orig_image, mask=pil_im) | |
if compare: | |
combined_width = orig_image.width + no_bg_image.width | |
combined_image = Image.new("RGBA", (combined_width, orig_image.height)) | |
combined_image.paste(orig_image, (0, 0)) | |
combined_image.paste(no_bg_image, (orig_image.width, 0)) | |
stacked_output_path = os.path.splitext(result_name)[0] + ".png" | |
combined_image.save(stacked_output_path) | |
else: | |
no_bg_image.save(result_name) | |
if __name__ == "__main__": | |
inference(parse_args()) | |