from flask import Flask, request, jsonify, render_template, flash, redirect, url_for, current_app from flask_login import LoginManager, UserMixin, login_user, logout_user, login_required, current_user from werkzeug.security import generate_password_hash, check_password_hash from transformers import pipeline from flask import session import torch from pydub import AudioSegment import os import io import uuid from datetime import datetime import sqlite3 from pathlib import Path import whisper from extensions import db, login_manager import json from admin import admin_bp from flask_migrate import Migrate from models import User from werkzeug.utils import secure_filename from forms import EditProfileForm instance_path = Path(__file__).parent / 'instance' instance_path.mkdir(exist_ok=True, mode=0o755) app = Flask(__name__) app.secret_key = 'очень_сложный_секретный_ключ_здесь' db_path = instance_path / 'chats.db' app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{db_path}' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # Инициализация Flask-Login db.init_app(app) login_manager.init_app(app) login_manager.login_view = 'welcome' migrate = Migrate(app, db) # Инициализация моделей def init_models(): try: emotion_map = { 'joy': '😊 Радость', 'neutral': '😐 Нейтрально', 'anger': '😠 Злость', 'sadness': '😢 Грусть', 'surprise': '😲 Удивление' } speech_to_text_model = whisper.load_model("base") text_classifier = pipeline( "text-classification", model="cointegrated/rubert-tiny2-cedr-emotion-detection" ) audio_classifier = pipeline( "audio-classification", model="superb/hubert-large-superb-er" ) return { 'emotion_map': emotion_map, 'speech_to_text_model': speech_to_text_model, 'text_classifier': text_classifier, 'audio_classifier': audio_classifier } except Exception as e: print(f"Ошибка загрузки моделей: {e}") return None models = init_models() if not models: raise RuntimeError("Не удалось загрузить модели") @app.template_filter('datetimeformat') def datetimeformat(value, format='%d.%m.%Y %H:%M'): if value is None: return "" return value.strftime(format) @app.context_processor def utility_processor(): return { 'emotion_map': { 'joy': '😊 Радость', 'neutral': '😐 Нейтрально', 'anger': '😠 Злость', 'sadness': '😢 Грусть', 'surprise': '😲 Удивление' }, 'get_emotion_color': lambda emotion: { 'joy': '#00b894', 'neutral': '#636e72', 'anger': '#d63031', 'sadness': '#0984e3', 'surprise': '#fdcb6e' }.get(emotion, '#4a4ae8') } # Импорт Blueprint from auth import auth_bp from profile import profile_bp app.register_blueprint(auth_bp) app.register_blueprint(profile_bp) app.register_blueprint(admin_bp, url_prefix='/admin') # Делаем переменные доступными emotion_map = models['emotion_map'] speech_to_text_model = models['speech_to_text_model'] text_classifier = models['text_classifier'] audio_classifier = models['audio_classifier'] @app.cli.command('create-admin') def create_admin(): """Создание администратора""" email = input("Введите email: ") password = input("Введите пароль: ") user = User.query.filter_by(email=email).first() if user: user.is_admin = True user.set_password(password) else: user = User(email=email, username=email, is_admin=True) user.set_password(password) db.session.add(user) db.session.commit() print(f"Администратор {email} создан") def transcribe_audio(audio_path): """Преобразование аудио в текст с помощью Whisper""" if not speech_to_text_model: return None try: result = speech_to_text_model.transcribe(audio_path, language="ru") return result["text"] except Exception as e: print(f"Ошибка преобразования аудио в текст: {e}") return None # Инициализация Flask-Login login_manager = LoginManager(app) login_manager.login_view = 'auth_bp.login' login_manager.login_message = "Для доступа к этой странице необходимо авторизоваться" login_manager.login_message_category = "info" @login_manager.user_loader def load_user(user_id): from models import User return User.query.get(int(user_id)) # Инициализация БД def get_db_connection(): instance_path = Path('instance') instance_path.mkdir(exist_ok=True) db_path = instance_path / 'chats.db' conn = sqlite3.connect(str(db_path)) conn.row_factory = sqlite3.Row return conn def init_db(): conn = get_db_connection() try: conn.execute(''' CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT UNIQUE NOT NULL, email TEXT UNIQUE NOT NULL, password_hash TEXT NOT NULL, created_at TEXT DEFAULT CURRENT_TIMESTAMP ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS chats ( chat_id TEXT PRIMARY KEY, user_id INTEGER, created_at TEXT, title TEXT, FOREIGN KEY(user_id) REFERENCES users(id) ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS messages ( id INTEGER PRIMARY KEY AUTOINCREMENT, chat_id TEXT, sender TEXT, content TEXT, timestamp TEXT, FOREIGN KEY(chat_id) REFERENCES chats(chat_id) ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS analysis_reports ( id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER, content TEXT, emotion TEXT, confidence REAL, created_at TEXT DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY(user_id) REFERENCES users(id) ) ''') conn.commit() finally: conn.close() init_db() # Маршруты аутентификации @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': email = request.form.get('email') password = request.form.get('password') conn = get_db_connection() user = conn.execute( "SELECT id, username, email, password_hash FROM users WHERE email = ?", (email,) ).fetchone() conn.close() if user and check_password_hash(user['password_hash'], password): user_obj = User(id=user['id'], username=user['username'], email=user['email'], password_hash=user['password_hash']) login_user(user_obj) session.pop('_flashes', None) return redirect(url_for('index')) else: flash('Неверный email или пароль', 'danger') # <-- теперь здесь return render_template('auth/login.html') @app.route('/register', methods=['GET', 'POST']) def register(): if request.method == 'POST': username = request.form.get('username') email = request.form.get('email') password = request.form.get('password') confirm_password = request.form.get('confirm_password') if password != confirm_password: flash('Пароли не совпадают', 'danger') return redirect(url_for('register')) conn = get_db_connection() try: password_hash = generate_password_hash(password) conn.execute( "INSERT INTO users (username, email, password_hash) VALUES (?, ?, ?)", (username, email, password_hash) ) conn.commit() flash('Регистрация прошла успешно! Теперь вы можете войти.', 'success') return redirect(url_for('login')) except sqlite3.IntegrityError: flash('Пользователь с таким email или именем уже существует', 'danger') finally: conn.close() return render_template('auth/register.html') from werkzeug.security import check_password_hash, generate_password_hash @app.route('/edit_profile', methods=['GET', 'POST']) @login_required def edit_profile(): form = EditProfileForm(obj=current_user) if form.validate_on_submit(): # Обновляем имя и почту current_user.username = form.username.data current_user.email = form.email.data # Обновляем аватар if form.avatar.data: filename = secure_filename(form.avatar.data.filename) unique_filename = f"{uuid.uuid4().hex}_{filename}" avatar_path = os.path.join(current_app.root_path, 'static/avatars', unique_filename) form.avatar.data.save(avatar_path) current_user.avatar = unique_filename # Обработка смены пароля if form.current_password.data: # Проверяем текущий пароль if check_password_hash(current_user.password_hash, form.current_password.data): # Меняем пароль на новый current_user.password_hash = generate_password_hash(form.new_password.data) flash('Пароль успешно изменён', 'success') else: flash('Текущий пароль неверный', 'danger') return redirect(url_for('edit_profile')) db.session.commit() flash('Профиль обновлён', 'success') return redirect(url_for('profile')) return render_template('edit_profile.html', form=form) # Основные маршруты @app.route("/welcome") def welcome(): return render_template("welcome.html") @app.route('/logout') @login_required def logout(): session.clear() logout_user() return redirect(url_for('welcome')) @app.route("/") def index(): if current_user.is_authenticated: conn = get_db_connection() try: chats = conn.execute( "SELECT chat_id, title FROM chats WHERE user_id = ? ORDER BY created_at DESC", (current_user.id,) ).fetchall() return render_template("index.html", chats=chats) finally: conn.close() return redirect(url_for('welcome')) @app.route('/profile') @login_required def profile(): conn = get_db_connection() try: # Запрашиваем все анализы пользователя reports = conn.execute( "SELECT * FROM analysis_reports WHERE user_id = ? ORDER BY created_at DESC", (current_user.id,) ).fetchall() # Статистика: общее количество анализов total_reports = len(reports) # Статистика: самая частая эмоция emotion_counts = {} for r in reports: emotion_counts[r['emotion']] = emotion_counts.get(r['emotion'], 0) + 1 most_common_emotion = max(emotion_counts, key=emotion_counts.get) if emotion_counts else None return render_template( "profile.html", reports=reports, total_reports=total_reports, most_common_emotion=most_common_emotion, emotion_map={ 'joy': '😊 Радость', 'neutral': '😐 Нейтрально', 'anger': '😠 Злость', 'sadness': '😢 Грусть', 'surprise': '😲 Удивление' } ) except Exception as e: flash(f"Ошибка загрузки данных: {e}", "danger") return redirect(url_for('index')) finally: conn.close() @app.route("/analyze", methods=["POST"]) @login_required def analyze_text(): if not text_classifier: return jsonify({"error": "Model not loaded"}), 500 try: data = request.get_json() text = data.get("text", "").strip() if not text: return jsonify({"error": "Empty text"}), 400 # Получаем предсказания модели result = text_classifier(text) # Проверяем структуру ответа if not result or not isinstance(result, list): return jsonify({"error": "Invalid model response"}), 500 # Берем первый результат (самый вероятный) prediction = result[0] if result else {} # Проверяем наличие нужных полей if not all(key in prediction for key in ['label', 'score']): return jsonify({"error": "Invalid prediction format"}), 500 # Сохраняем в базу данных conn = get_db_connection() conn.execute( "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)", (current_user.id, text, prediction['label'], prediction['score']) ) conn.commit() conn.close() return jsonify({ "emotion": emotion_map.get(prediction['label'], "❓ Неизвестно"), "confidence": float(prediction['score']) }) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/analyze_audio', methods=['POST']) @login_required def analyze_audio(): if not audio_classifier or not speech_to_text_model: return jsonify({"error": "Model not loaded"}), 500 if 'audio' not in request.files: return jsonify({'error': 'No audio file'}), 400 try: audio_file = request.files['audio'] temp_path = "temp_audio.wav" audio = AudioSegment.from_file(io.BytesIO(audio_file.read())) audio = audio.set_frame_rate(16000).set_channels(1) audio.export(temp_path, format="wav", codec="pcm_s16le") transcribed_text = transcribe_audio(temp_path) result = audio_classifier(temp_path) os.remove(temp_path) emotion_mapping = { 'hap': 'happy', 'sad': 'sad', 'neu': 'neutral', 'ang': 'angry' } emotions = {emotion_mapping.get(item['label'].lower(), 'neutral'): item['score'] for item in result if item['label'].lower() in emotion_mapping} dominant_emotion = max(emotions.items(), key=lambda x: x[1]) response_map = { 'happy': '😊 Радость', 'sad': '😢 Грусть', 'angry': '😠 Злость', 'neutral': '😐 Нейтрально' } conn = get_db_connection() conn.execute( "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)", (current_user.id, transcribed_text, dominant_emotion[0], dominant_emotion[1]) ) conn.commit() conn.close() return jsonify({ 'emotion': response_map.get(dominant_emotion[0], 'неизвестно'), 'confidence': round(dominant_emotion[1], 2), 'transcribed_text': transcribed_text if transcribed_text else "Не удалось распознать текст" }) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/analyze_telegram_chat', methods=['POST']) @login_required def analyze_telegram_chat(): if 'file' not in request.files: return jsonify({'error': 'No file uploaded'}), 400 file = request.files['file'] if file.filename.split('.')[-1].lower() != 'json': return jsonify({'error': 'Invalid file format. Only JSON allowed'}), 400 try: data = json.load(file) messages = [] for msg in data.get('messages', []): text = msg.get('text') sender = msg.get('from') or msg.get('sender') or 'Неизвестный пользователь' if isinstance(text, str) and len(text.strip()) > 5: messages.append({ 'text': text, 'timestamp': msg.get('date', datetime.now().isoformat()), 'from': sender # <-- сохраняем имя отправителя }) if not messages: return jsonify({'error': 'No valid text messages found'}), 400 results = [] for msg in messages[:500]: prediction = text_classifier(msg['text'])[0] results.append({ 'text': msg['text'], 'emotion': prediction['label'], 'confidence': prediction['score'], 'timestamp': msg['timestamp'], 'from': msg['from'] # <-- передаем дальше }) conn = get_db_connection() conn.execute(''' CREATE TABLE IF NOT EXISTS telegram_analysis ( id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER, data TEXT, created_at TEXT DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY(user_id) REFERENCES users(id) ) ''') conn.execute( "INSERT INTO telegram_analysis (user_id, data) VALUES (?, ?)", (current_user.id, json.dumps(results)) ) conn.commit() return jsonify({ 'status': 'success', 'message_count': len(results), }) except Exception as e: print(f"Error during analysis: {e}") return jsonify({'error': f'Server error: {str(e)}'}), 500 finally: conn.close() @app.route('/get_chats') @login_required def get_chats(): conn = get_db_connection() try: chats = conn.execute( "SELECT chat_id, title, created_at FROM chats WHERE user_id = ? ORDER BY created_at DESC", (current_user.id,) ).fetchall() return jsonify([dict(chat) for chat in chats]) finally: conn.close() @app.route('/start_chat', methods=['POST']) @login_required def start_chat(): try: chat_id = str(uuid.uuid4()) title = f"Чат от {datetime.now().strftime('%d.%m.%Y %H:%M')}" conn = get_db_connection() conn.execute( "INSERT INTO chats (chat_id, user_id, created_at, title) VALUES (?, ?, ?, ?)", (chat_id, current_user.id, datetime.now(), title) ) conn.commit() return jsonify({ "success": True, "chat_id": chat_id, "title": title }) except Exception as e: return jsonify({"error": str(e)}), 500 finally: conn.close() @app.route('/delete_chat/', methods=['DELETE']) @login_required def delete_chat(chat_id): conn = get_db_connection() try: # Удаляем связанные сообщения conn.execute("DELETE FROM messages WHERE chat_id = ?", (chat_id,)) # Удаляем анализы эмоций, связанные с сообщениями этого чата # (если у вас есть связь между analysis_reports и chat_id) conn.execute(""" DELETE FROM analysis_reports WHERE content IN ( SELECT content FROM messages WHERE chat_id = ? ) AND user_id = ? """, (chat_id, current_user.id)) # Удаляем сам чат conn.execute("DELETE FROM chats WHERE chat_id = ? AND user_id = ?", (chat_id, current_user.id)) conn.commit() return jsonify({"success": True}) except Exception as e: return jsonify({"error": str(e)}), 500 finally: conn.close() @app.route('/get_telegram_analysis') @login_required def get_telegram_analysis(): conn = get_db_connection() try: analyses = conn.execute( "SELECT id, data, created_at FROM telegram_analysis WHERE user_id = ?", (current_user.id,) ).fetchall() return jsonify([dict(analysis) for analysis in analyses]) except Exception as e: return jsonify({"error": str(e)}), 500 finally: conn.close() @app.route('/load_chat/') @login_required def load_chat(chat_id): conn = get_db_connection() try: # Получаем информацию о чате chat = conn.execute( "SELECT chat_id, title FROM chats WHERE chat_id = ? AND user_id = ?", (chat_id, current_user.id) ).fetchone() if not chat: return jsonify({"error": "Чат не найден"}), 404 # Получаем сообщения чата messages = conn.execute( "SELECT sender, content FROM messages WHERE chat_id = ? ORDER BY timestamp ASC", (chat_id,) ).fetchall() return jsonify({ "chat_id": chat["chat_id"], "title": chat["title"], "messages": [dict(msg) for msg in messages] }) finally: conn.close() @app.route('/save_message', methods=['POST']) @login_required def save_message(): data = request.get_json() if not data or 'chat_id' not in data or 'content' not in data or 'sender' not in data: return jsonify({"error": "Неверные данные"}), 400 conn = get_db_connection() try: # Проверяем, что чат принадлежит текущему пользователю chat = conn.execute( "SELECT chat_id FROM chats WHERE chat_id = ? AND user_id = ?", (data['chat_id'], current_user.id) ).fetchone() if not chat: return jsonify({"error": "Чат не найден"}), 404 # Анализируем эмоцию в тексте emotion = "neutral" confidence = 0.0 if text_classifier and data['content'].strip(): try: predictions = text_classifier(data['content'])[0] top_prediction = max(predictions, key=lambda x: x["score"]) emotion = top_prediction["label"] confidence = top_prediction["score"] # Сохраняем анализ в базу conn.execute( "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)", (current_user.id, data['content'], emotion, confidence) ) except Exception as e: print(f"Ошибка анализа эмоции: {e}") # Сохраняем сообщение conn.execute( "INSERT INTO messages (chat_id, sender, content, timestamp) VALUES (?, ?, ?, ?)", (data['chat_id'], data['sender'], data['content'], datetime.now()) ) conn.commit() return jsonify({ "status": "success", "emotion": emotion_map.get(emotion, "❓ Неизвестно"), "confidence": round(confidence, 2) }) except Exception as e: return jsonify({"error": str(e)}), 500 finally: conn.close() if __name__ == "__main__": app.run(debug=True)