File size: 24,144 Bytes
6bcf797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760989a
 
 
6bcf797
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
from flask import Flask, request, jsonify, render_template, flash, redirect, url_for, current_app
from flask_login import LoginManager, UserMixin, login_user, logout_user, login_required, current_user
from werkzeug.security import generate_password_hash, check_password_hash
from transformers import pipeline
from flask import session
import torch
from pydub import AudioSegment
import os
import io
import uuid
from datetime import datetime
import sqlite3
from pathlib import Path
import whisper
from extensions import db, login_manager
import json
from admin import admin_bp
from flask_migrate import Migrate
from models import User
from werkzeug.utils import secure_filename
from forms import EditProfileForm

instance_path = Path(__file__).parent / 'instance'
instance_path.mkdir(exist_ok=True, mode=0o755)

app = Flask(__name__)
app.secret_key = 'очень_сложный_секретный_ключ_здесь'
db_path = instance_path / 'chats.db'
app.config['SQLALCHEMY_DATABASE_URI'] = f'sqlite:///{db_path}'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

# Инициализация Flask-Login
db.init_app(app)
login_manager.init_app(app)
login_manager.login_view = 'welcome'
migrate = Migrate(app, db)


# Инициализация моделей
def init_models():
    try:
        emotion_map = {
            'joy': '😊 Радость',
            'neutral': '😐 Нейтрально',
            'anger': '😠 Злость',
            'sadness': '😢 Грусть',
            'surprise': '😲 Удивление'
        }

        speech_to_text_model = whisper.load_model("base")
        text_classifier = pipeline(
            "text-classification",
            model="cointegrated/rubert-tiny2-cedr-emotion-detection"
        )
        audio_classifier = pipeline(
            "audio-classification",
            model="superb/hubert-large-superb-er"
        )

        return {
            'emotion_map': emotion_map,
            'speech_to_text_model': speech_to_text_model,
            'text_classifier': text_classifier,
            'audio_classifier': audio_classifier
        }
    except Exception as e:
        print(f"Ошибка загрузки моделей: {e}")
        return None


models = init_models()
if not models:
    raise RuntimeError("Не удалось загрузить модели")


@app.template_filter('datetimeformat')
def datetimeformat(value, format='%d.%m.%Y %H:%M'):
    if value is None:
        return ""
    return value.strftime(format)


@app.context_processor
def utility_processor():
    return {
        'emotion_map': {
            'joy': '😊 Радость',
            'neutral': '😐 Нейтрально',
            'anger': '😠 Злость',
            'sadness': '😢 Грусть',
            'surprise': '😲 Удивление'
        },
        'get_emotion_color': lambda emotion: {
            'joy': '#00b894',
            'neutral': '#636e72',
            'anger': '#d63031',
            'sadness': '#0984e3',
            'surprise': '#fdcb6e'
        }.get(emotion, '#4a4ae8')
    }


# Импорт Blueprint
from auth import auth_bp
from profile import profile_bp

app.register_blueprint(auth_bp)
app.register_blueprint(profile_bp)
app.register_blueprint(admin_bp, url_prefix='/admin')

# Делаем переменные доступными
emotion_map = models['emotion_map']
speech_to_text_model = models['speech_to_text_model']
text_classifier = models['text_classifier']
audio_classifier = models['audio_classifier']


@app.cli.command('create-admin')
def create_admin():
    """Создание администратора"""
    email = input("Введите email: ")
    password = input("Введите пароль: ")
    user = User.query.filter_by(email=email).first()
    if user:
        user.is_admin = True
        user.set_password(password)
    else:
        user = User(email=email, username=email, is_admin=True)
        user.set_password(password)
        db.session.add(user)
    db.session.commit()
    print(f"Администратор {email} создан")


def transcribe_audio(audio_path):
    """Преобразование аудио в текст с помощью Whisper"""
    if not speech_to_text_model:
        return None
    try:
        result = speech_to_text_model.transcribe(audio_path, language="ru")
        return result["text"]
    except Exception as e:
        print(f"Ошибка преобразования аудио в текст: {e}")
        return None


# Инициализация Flask-Login
login_manager = LoginManager(app)
login_manager.login_view = 'auth_bp.login'
login_manager.login_message = "Для доступа к этой странице необходимо авторизоваться"
login_manager.login_message_category = "info"


@login_manager.user_loader
def load_user(user_id):
    from models import User
    return User.query.get(int(user_id))


# Инициализация БД
def get_db_connection():
    instance_path = Path('instance')
    instance_path.mkdir(exist_ok=True)
    db_path = instance_path / 'chats.db'
    conn = sqlite3.connect(str(db_path))
    conn.row_factory = sqlite3.Row
    return conn


def init_db():
    conn = get_db_connection()
    try:
        conn.execute('''
            CREATE TABLE IF NOT EXISTS users (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                username TEXT UNIQUE NOT NULL,
                email TEXT UNIQUE NOT NULL,
                password_hash TEXT NOT NULL,
                created_at TEXT DEFAULT CURRENT_TIMESTAMP
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS chats (
                chat_id TEXT PRIMARY KEY,
                user_id INTEGER,
                created_at TEXT,
                title TEXT,
                FOREIGN KEY(user_id) REFERENCES users(id)
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS messages (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                chat_id TEXT,
                sender TEXT,
                content TEXT,
                timestamp TEXT,
                FOREIGN KEY(chat_id) REFERENCES chats(chat_id)
            )
        ''')
        conn.execute('''
            CREATE TABLE IF NOT EXISTS analysis_reports (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                user_id INTEGER,
                content TEXT,
                emotion TEXT,
                confidence REAL,
                created_at TEXT DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY(user_id) REFERENCES users(id)
            )
        ''')
        conn.commit()
    finally:
        conn.close()


init_db()


# Маршруты аутентификации
@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        email = request.form.get('email')
        password = request.form.get('password')

        conn = get_db_connection()
        user = conn.execute(
            "SELECT id, username, email, password_hash FROM users WHERE email = ?",
            (email,)
        ).fetchone()
        conn.close()

        if user and check_password_hash(user['password_hash'], password):
            user_obj = User(id=user['id'], username=user['username'],
                            email=user['email'], password_hash=user['password_hash'])
            login_user(user_obj)
            session.pop('_flashes', None)
            return redirect(url_for('index'))
        else:
            flash('Неверный email или пароль', 'danger')  # <-- теперь здесь

    return render_template('auth/login.html')


@app.route('/register', methods=['GET', 'POST'])
def register():
    if request.method == 'POST':
        username = request.form.get('username')
        email = request.form.get('email')
        password = request.form.get('password')
        confirm_password = request.form.get('confirm_password')

        if password != confirm_password:
            flash('Пароли не совпадают', 'danger')
            return redirect(url_for('register'))

        conn = get_db_connection()
        try:
            password_hash = generate_password_hash(password)
            conn.execute(
                "INSERT INTO users (username, email, password_hash) VALUES (?, ?, ?)",
                (username, email, password_hash)
            )
            conn.commit()
            flash('Регистрация прошла успешно! Теперь вы можете войти.', 'success')
            return redirect(url_for('login'))
        except sqlite3.IntegrityError:
            flash('Пользователь с таким email или именем уже существует', 'danger')
        finally:
            conn.close()

    return render_template('auth/register.html')


from werkzeug.security import check_password_hash, generate_password_hash

@app.route('/edit_profile', methods=['GET', 'POST'])
@login_required
def edit_profile():
    form = EditProfileForm(obj=current_user)
    if form.validate_on_submit():
        # Обновляем имя и почту
        current_user.username = form.username.data
        current_user.email = form.email.data

        # Обновляем аватар
        if form.avatar.data:
            filename = secure_filename(form.avatar.data.filename)
            unique_filename = f"{uuid.uuid4().hex}_{filename}"
            avatar_path = os.path.join(current_app.root_path, 'static/avatars', unique_filename)
            form.avatar.data.save(avatar_path)
            current_user.avatar = unique_filename

        # Обработка смены пароля
        if form.current_password.data:
            # Проверяем текущий пароль
            if check_password_hash(current_user.password_hash, form.current_password.data):
                # Меняем пароль на новый
                current_user.password_hash = generate_password_hash(form.new_password.data)
                flash('Пароль успешно изменён', 'success')
            else:
                flash('Текущий пароль неверный', 'danger')
                return redirect(url_for('edit_profile'))

        db.session.commit()
        flash('Профиль обновлён', 'success')
        return redirect(url_for('profile'))

    return render_template('edit_profile.html', form=form)



# Основные маршруты
@app.route("/welcome")
def welcome():
    return render_template("welcome.html")


@app.route('/logout')
@login_required
def logout():
    session.clear()
    logout_user()
    return redirect(url_for('welcome'))


@app.route("/")
def index():
    if current_user.is_authenticated:
        conn = get_db_connection()
        try:
            chats = conn.execute(
                "SELECT chat_id, title FROM chats WHERE user_id = ? ORDER BY created_at DESC",
                (current_user.id,)
            ).fetchall()
            return render_template("index.html", chats=chats)
        finally:
            conn.close()
    return redirect(url_for('welcome'))


@app.route('/profile')
@login_required
def profile():
    conn = get_db_connection()
    try:
        # Запрашиваем все анализы пользователя
        reports = conn.execute(
            "SELECT * FROM analysis_reports WHERE user_id = ? ORDER BY created_at DESC",
            (current_user.id,)
        ).fetchall()

        # Статистика: общее количество анализов
        total_reports = len(reports)

        # Статистика: самая частая эмоция
        emotion_counts = {}
        for r in reports:
            emotion_counts[r['emotion']] = emotion_counts.get(r['emotion'], 0) + 1

        most_common_emotion = max(emotion_counts, key=emotion_counts.get) if emotion_counts else None

        return render_template(
            "profile.html",
            reports=reports,
            total_reports=total_reports,
            most_common_emotion=most_common_emotion,
            emotion_map={
                'joy': '😊 Радость',
                'neutral': '😐 Нейтрально',
                'anger': '😠 Злость',
                'sadness': '😢 Грусть',
                'surprise': '😲 Удивление'
            }
        )
    except Exception as e:
        flash(f"Ошибка загрузки данных: {e}", "danger")
        return redirect(url_for('index'))
    finally:
        conn.close()


@app.route("/analyze", methods=["POST"])
@login_required
def analyze_text():
    if not text_classifier:
        return jsonify({"error": "Model not loaded"}), 500

    try:
        data = request.get_json()
        text = data.get("text", "").strip()

        if not text:
            return jsonify({"error": "Empty text"}), 400

        # Получаем предсказания модели
        result = text_classifier(text)

        # Проверяем структуру ответа
        if not result or not isinstance(result, list):
            return jsonify({"error": "Invalid model response"}), 500

        # Берем первый результат (самый вероятный)
        prediction = result[0] if result else {}

        # Проверяем наличие нужных полей
        if not all(key in prediction for key in ['label', 'score']):
            return jsonify({"error": "Invalid prediction format"}), 500

        # Сохраняем в базу данных
        conn = get_db_connection()
        conn.execute(
            "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
            (current_user.id, text, prediction['label'], prediction['score'])
        )
        conn.commit()
        conn.close()

        return jsonify({
            "emotion": emotion_map.get(prediction['label'], "❓ Неизвестно"),
            "confidence": float(prediction['score'])
        })

    except Exception as e:
        return jsonify({"error": str(e)}), 500


@app.route('/analyze_audio', methods=['POST'])
@login_required
def analyze_audio():
    if not audio_classifier or not speech_to_text_model:
        return jsonify({"error": "Model not loaded"}), 500

    if 'audio' not in request.files:
        return jsonify({'error': 'No audio file'}), 400

    try:
        audio_file = request.files['audio']
        temp_path = "temp_audio.wav"

        audio = AudioSegment.from_file(io.BytesIO(audio_file.read()))
        audio = audio.set_frame_rate(16000).set_channels(1)
        audio.export(temp_path, format="wav", codec="pcm_s16le")

        transcribed_text = transcribe_audio(temp_path)
        result = audio_classifier(temp_path)
        os.remove(temp_path)

        emotion_mapping = {
            'hap': 'happy',
            'sad': 'sad',
            'neu': 'neutral',
            'ang': 'angry'
        }
        emotions = {emotion_mapping.get(item['label'].lower(), 'neutral'): item['score']
                    for item in result if item['label'].lower() in emotion_mapping}

        dominant_emotion = max(emotions.items(), key=lambda x: x[1])
        response_map = {
            'happy': '😊 Радость',
            'sad': '😢 Грусть',
            'angry': '😠 Злость',
            'neutral': '😐 Нейтрально'
        }

        conn = get_db_connection()
        conn.execute(
            "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
            (current_user.id, transcribed_text, dominant_emotion[0], dominant_emotion[1])
        )
        conn.commit()
        conn.close()

        return jsonify({
            'emotion': response_map.get(dominant_emotion[0], 'неизвестно'),
            'confidence': round(dominant_emotion[1], 2),
            'transcribed_text': transcribed_text if transcribed_text else "Не удалось распознать текст"
        })
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/analyze_telegram_chat', methods=['POST'])
@login_required
def analyze_telegram_chat():
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400
    file = request.files['file']
    if file.filename.split('.')[-1].lower() != 'json':
        return jsonify({'error': 'Invalid file format. Only JSON allowed'}), 400
    try:
        data = json.load(file)

        messages = []
        for msg in data.get('messages', []):
            text = msg.get('text')
            sender = msg.get('from') or msg.get('sender') or 'Неизвестный пользователь'
            if isinstance(text, str) and len(text.strip()) > 5:
                messages.append({
                    'text': text,
                    'timestamp': msg.get('date', datetime.now().isoformat()),
                    'from': sender  # <-- сохраняем имя отправителя
                })

        if not messages:
            return jsonify({'error': 'No valid text messages found'}), 400

        results = []
        for msg in messages[:500]:
            prediction = text_classifier(msg['text'])[0]
            results.append({
                'text': msg['text'],
                'emotion': prediction['label'],
                'confidence': prediction['score'],
                'timestamp': msg['timestamp'],
                'from': msg['from']  # <-- передаем дальше
            })

        conn = get_db_connection()
        conn.execute('''
            CREATE TABLE IF NOT EXISTS telegram_analysis (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                user_id INTEGER,
                data TEXT,
                created_at TEXT DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY(user_id) REFERENCES users(id)
            )
        ''')
        conn.execute(
            "INSERT INTO telegram_analysis (user_id, data) VALUES (?, ?)",
            (current_user.id, json.dumps(results))
        )
        conn.commit()

        return jsonify({
            'status': 'success',
            'message_count': len(results),
        })

    except Exception as e:
        print(f"Error during analysis: {e}")
        return jsonify({'error': f'Server error: {str(e)}'}), 500
    finally:
        conn.close()


@app.route('/get_chats')
@login_required
def get_chats():
    conn = get_db_connection()
    try:
        chats = conn.execute(
            "SELECT chat_id, title, created_at FROM chats WHERE user_id = ? ORDER BY created_at DESC",
            (current_user.id,)
        ).fetchall()
        return jsonify([dict(chat) for chat in chats])
    finally:
        conn.close()


@app.route('/start_chat', methods=['POST'])
@login_required
def start_chat():
    try:
        chat_id = str(uuid.uuid4())
        title = f"Чат от {datetime.now().strftime('%d.%m.%Y %H:%M')}"

        conn = get_db_connection()
        conn.execute(
            "INSERT INTO chats (chat_id, user_id, created_at, title) VALUES (?, ?, ?, ?)",
            (chat_id, current_user.id, datetime.now(), title)
        )
        conn.commit()

        return jsonify({
            "success": True,
            "chat_id": chat_id,
            "title": title
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()


@app.route('/delete_chat/<chat_id>', methods=['DELETE'])
@login_required
def delete_chat(chat_id):
    conn = get_db_connection()
    try:
        # Удаляем связанные сообщения
        conn.execute("DELETE FROM messages WHERE chat_id = ?", (chat_id,))

        # Удаляем анализы эмоций, связанные с сообщениями этого чата
        # (если у вас есть связь между analysis_reports и chat_id)
        conn.execute("""
            DELETE FROM analysis_reports 
            WHERE content IN (
                SELECT content FROM messages WHERE chat_id = ?
            ) AND user_id = ?
        """, (chat_id, current_user.id))

        # Удаляем сам чат
        conn.execute("DELETE FROM chats WHERE chat_id = ? AND user_id = ?",
                     (chat_id, current_user.id))
        conn.commit()
        return jsonify({"success": True})
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()


@app.route('/get_telegram_analysis')
@login_required
def get_telegram_analysis():
    conn = get_db_connection()
    try:
        analyses = conn.execute(
            "SELECT id, data, created_at FROM telegram_analysis WHERE user_id = ?",
            (current_user.id,)
        ).fetchall()
        return jsonify([dict(analysis) for analysis in analyses])
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()


@app.route('/load_chat/<chat_id>')
@login_required
def load_chat(chat_id):
    conn = get_db_connection()
    try:
        # Получаем информацию о чате
        chat = conn.execute(
            "SELECT chat_id, title FROM chats WHERE chat_id = ? AND user_id = ?",
            (chat_id, current_user.id)
        ).fetchone()

        if not chat:
            return jsonify({"error": "Чат не найден"}), 404

        # Получаем сообщения чата
        messages = conn.execute(
            "SELECT sender, content FROM messages WHERE chat_id = ? ORDER BY timestamp ASC",
            (chat_id,)
        ).fetchall()

        return jsonify({
            "chat_id": chat["chat_id"],
            "title": chat["title"],
            "messages": [dict(msg) for msg in messages]
        })
    finally:
        conn.close()


@app.route('/save_message', methods=['POST'])
@login_required
def save_message():
    data = request.get_json()
    if not data or 'chat_id' not in data or 'content' not in data or 'sender' not in data:
        return jsonify({"error": "Неверные данные"}), 400

    conn = get_db_connection()
    try:
        # Проверяем, что чат принадлежит текущему пользователю
        chat = conn.execute(
            "SELECT chat_id FROM chats WHERE chat_id = ? AND user_id = ?",
            (data['chat_id'], current_user.id)
        ).fetchone()

        if not chat:
            return jsonify({"error": "Чат не найден"}), 404

        # Анализируем эмоцию в тексте
        emotion = "neutral"
        confidence = 0.0
        if text_classifier and data['content'].strip():
            try:
                predictions = text_classifier(data['content'])[0]
                top_prediction = max(predictions, key=lambda x: x["score"])
                emotion = top_prediction["label"]
                confidence = top_prediction["score"]

                # Сохраняем анализ в базу
                conn.execute(
                    "INSERT INTO analysis_reports (user_id, content, emotion, confidence) VALUES (?, ?, ?, ?)",
                    (current_user.id, data['content'], emotion, confidence)
                )
            except Exception as e:
                print(f"Ошибка анализа эмоции: {e}")

        # Сохраняем сообщение
        conn.execute(
            "INSERT INTO messages (chat_id, sender, content, timestamp) VALUES (?, ?, ?, ?)",
            (data['chat_id'], data['sender'], data['content'], datetime.now())
        )
        conn.commit()

        return jsonify({
            "status": "success",
            "emotion": emotion_map.get(emotion, "❓ Неизвестно"),
            "confidence": round(confidence, 2)
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500
    finally:
        conn.close()


if __name__ == "__main__":
    app.run(debug=True)