Update app.py
Browse files
app.py
CHANGED
@@ -33,28 +33,36 @@ MODEL_NAME = "microsoft/deberta-v3-small"
|
|
33 |
WINDOW_SIZE = 6
|
34 |
WINDOW_OVERLAP = 2
|
35 |
CONFIDENCE_THRESHOLD = 0.65
|
36 |
-
BATCH_SIZE = 8
|
37 |
-
MAX_WORKERS = 4
|
38 |
-
|
39 |
|
|
|
|
|
40 |
if not torch.cuda.is_available():
|
|
|
41 |
torch.set_num_threads(MAX_WORKERS)
|
42 |
try:
|
|
|
43 |
torch.set_num_interop_threads(MAX_WORKERS)
|
44 |
except RuntimeError as e:
|
45 |
logger.warning(f"Could not set interop threads: {str(e)}")
|
46 |
|
|
|
47 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
48 |
|
49 |
if not ADMIN_PASSWORD_HASH:
|
50 |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
|
51 |
|
|
|
52 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
53 |
-
|
|
|
|
|
54 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
55 |
OCR_MAX_PDF_PAGES = 3
|
56 |
OCR_MAX_FILE_SIZE_MB = 1
|
57 |
|
|
|
58 |
ocr_logger = logging.getLogger("ocr_module")
|
59 |
ocr_logger.setLevel(logging.INFO)
|
60 |
|
@@ -87,6 +95,10 @@ class OCRProcessor:
|
|
87 |
file_type = self._get_file_type(file_path)
|
88 |
ocr_logger.info(f"Detected file type: {file_type}")
|
89 |
|
|
|
|
|
|
|
|
|
90 |
# Set up API parameters
|
91 |
payload = {
|
92 |
'isOverlayRequired': 'false',
|
@@ -101,10 +113,7 @@ class OCRProcessor:
|
|
101 |
ocr_logger.info("PDF document detected, enforcing page limit")
|
102 |
payload['filetype'] = 'PDF'
|
103 |
|
104 |
-
# Prepare file for OCR API
|
105 |
-
with open(file_path, 'rb') as f:
|
106 |
-
file_data = f.read()
|
107 |
-
|
108 |
files = {
|
109 |
'file': (os.path.basename(file_path), file_data, file_type)
|
110 |
}
|
@@ -115,61 +124,33 @@ class OCRProcessor:
|
|
115 |
|
116 |
# Make the OCR API request
|
117 |
try:
|
118 |
-
ocr_logger.info(
|
119 |
response = requests.post(
|
120 |
self.endpoint,
|
121 |
files=files,
|
122 |
data=payload,
|
123 |
-
headers=headers
|
124 |
-
timeout=60 # Add 60 second timeout
|
125 |
)
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
try:
|
134 |
-
response.raise_for_status()
|
135 |
-
except Exception as e:
|
136 |
-
ocr_logger.error(f"HTTP Error: {str(e)}")
|
137 |
return {
|
138 |
-
"success":
|
139 |
-
"
|
140 |
-
"
|
|
|
141 |
}
|
142 |
-
|
143 |
-
|
144 |
-
result = response.json()
|
145 |
-
ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}")
|
146 |
-
|
147 |
-
# Process the OCR results
|
148 |
-
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
149 |
-
extracted_text = self._extract_text_from_result(result)
|
150 |
-
processing_time = time.time() - start_time
|
151 |
-
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
152 |
-
ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}")
|
153 |
-
|
154 |
-
return {
|
155 |
-
"success": True,
|
156 |
-
"text": extracted_text,
|
157 |
-
"word_count": len(extracted_text.split()),
|
158 |
-
"processing_time_ms": int(processing_time * 1000)
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
error_msg = result.get('ErrorMessage', 'OCR processing failed')
|
162 |
-
ocr_logger.error(f"OCR API error: {error_msg}")
|
163 |
-
return {
|
164 |
-
"success": False,
|
165 |
-
"error": error_msg,
|
166 |
-
"text": ""
|
167 |
-
}
|
168 |
-
except ValueError as e:
|
169 |
-
ocr_logger.error(f"Invalid JSON response: {str(e)}")
|
170 |
return {
|
171 |
"success": False,
|
172 |
-
"error":
|
173 |
"text": ""
|
174 |
}
|
175 |
|
@@ -180,9 +161,6 @@ class OCRProcessor:
|
|
180 |
"error": f"OCR API request failed: {str(e)}",
|
181 |
"text": ""
|
182 |
}
|
183 |
-
finally:
|
184 |
-
# No need to close file handle as we're using bytes directly
|
185 |
-
pass
|
186 |
|
187 |
def _extract_text_from_result(self, result: Dict) -> str:
|
188 |
"""
|
@@ -515,14 +493,10 @@ class TextClassifier:
|
|
515 |
}
|
516 |
|
517 |
# Function to handle file upload, OCR processing, and text analysis
|
518 |
-
def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
519 |
"""
|
520 |
Handle file upload, OCR processing, and text analysis
|
521 |
"""
|
522 |
-
# Use the global classifier
|
523 |
-
global classifier
|
524 |
-
classifier_to_use = classifier
|
525 |
-
|
526 |
if file_obj is None:
|
527 |
return (
|
528 |
"No file uploaded",
|
@@ -530,50 +504,35 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
530 |
"No file uploaded for analysis"
|
531 |
)
|
532 |
|
533 |
-
#
|
534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
|
536 |
try:
|
537 |
-
# Create a temporary file with an appropriate extension based on content
|
538 |
-
if isinstance(file_obj, bytes):
|
539 |
-
content_start = file_obj[:20] # Look at the first few bytes
|
540 |
-
|
541 |
-
# Default to .bin extension
|
542 |
-
file_ext = ".bin"
|
543 |
-
|
544 |
-
# Try to detect PDF files
|
545 |
-
if content_start.startswith(b'%PDF'):
|
546 |
-
file_ext = ".pdf"
|
547 |
-
# For images, detect by common magic numbers
|
548 |
-
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
549 |
-
file_ext = ".jpg"
|
550 |
-
elif content_start.startswith(b'\x89PNG'): # PNG
|
551 |
-
file_ext = ".png"
|
552 |
-
elif content_start.startswith(b'GIF'): # GIF
|
553 |
-
file_ext = ".gif"
|
554 |
-
|
555 |
-
# Create a temporary file with the detected extension
|
556 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
557 |
-
temp_file_path = temp_file.name
|
558 |
-
# Write uploaded file data to the temporary file
|
559 |
-
temp_file.write(file_obj)
|
560 |
-
logger.info(f"Saved uploaded file to {temp_file_path}")
|
561 |
-
else:
|
562 |
-
# Handle other file object types (should not typically happen with Gradio)
|
563 |
-
logger.error(f"Unexpected file object type: {type(file_obj)}")
|
564 |
-
return (
|
565 |
-
"File upload error",
|
566 |
-
"Unexpected file format",
|
567 |
-
"Unable to process this file format"
|
568 |
-
)
|
569 |
-
|
570 |
# Process the file with OCR
|
571 |
ocr_processor = OCRProcessor()
|
572 |
-
logger.info(f"Starting OCR processing for file: {temp_file_path}")
|
573 |
ocr_result = ocr_processor.process_file(temp_file_path)
|
574 |
|
575 |
if not ocr_result["success"]:
|
576 |
-
logger.error(f"OCR processing failed: {ocr_result['error']}")
|
577 |
return (
|
578 |
"OCR Processing Error",
|
579 |
ocr_result["error"],
|
@@ -582,11 +541,9 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
582 |
|
583 |
# Get the extracted text
|
584 |
extracted_text = ocr_result["text"]
|
585 |
-
logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words")
|
586 |
|
587 |
# If no text was extracted
|
588 |
if not extracted_text.strip():
|
589 |
-
logger.warning("No text extracted from file")
|
590 |
return (
|
591 |
"No text extracted",
|
592 |
"The OCR process did not extract any text from the uploaded file.",
|
@@ -594,24 +551,12 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
594 |
)
|
595 |
|
596 |
# Call the original text analysis function with the extracted text
|
597 |
-
|
598 |
-
return analyze_text(extracted_text, mode, classifier_to_use)
|
599 |
|
600 |
-
except Exception as e:
|
601 |
-
logger.error(f"Error in file upload processing: {str(e)}")
|
602 |
-
return (
|
603 |
-
"Error Processing File",
|
604 |
-
f"An error occurred while processing the file: {str(e)}",
|
605 |
-
"File processing error. Please try again or try a different file."
|
606 |
-
)
|
607 |
finally:
|
608 |
# Clean up the temporary file
|
609 |
-
if
|
610 |
-
|
611 |
-
os.remove(temp_file_path)
|
612 |
-
logger.info(f"Removed temporary file: {temp_file_path}")
|
613 |
-
except Exception as e:
|
614 |
-
logger.warning(f"Could not remove temporary file: {str(e)}")
|
615 |
|
616 |
def initialize_excel_log():
|
617 |
"""Initialize the Excel log file if it doesn't exist."""
|
@@ -825,7 +770,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
825 |
# Initialize the classifier globally
|
826 |
classifier = TextClassifier()
|
827 |
|
828 |
-
# Create Gradio interface with a file upload button
|
829 |
def create_interface():
|
830 |
# Custom CSS for the interface
|
831 |
css = """
|
@@ -835,46 +780,49 @@ def create_interface():
|
|
835 |
color: white !important;
|
836 |
}
|
837 |
|
838 |
-
/* Style the file upload to
|
839 |
-
.file-upload {
|
840 |
-
|
841 |
-
|
|
|
842 |
}
|
843 |
|
844 |
-
/* Hide file preview
|
845 |
-
.file-upload .file-preview
|
846 |
-
.file-upload p:not(.file-upload p:first-child),
|
847 |
-
.file-upload svg,
|
848 |
-
.file-upload [data-testid="chunkFileDropArea"],
|
849 |
-
.file-upload .file-drop {
|
850 |
display: none !important;
|
851 |
}
|
852 |
|
853 |
-
/* Style the upload button */
|
854 |
-
.file-upload
|
|
|
855 |
height: 40px !important;
|
856 |
-
width: 100% !important;
|
857 |
background-color: #f0f0f0 !important;
|
858 |
border: 1px solid #d9d9d9 !important;
|
859 |
border-radius: 4px !important;
|
860 |
-
color: #333 !important;
|
861 |
-
font-size: 14px !important;
|
862 |
display: flex !important;
|
863 |
align-items: center !important;
|
864 |
justify-content: center !important;
|
|
|
865 |
margin: 0 !important;
|
866 |
-
padding: 0 !important;
|
867 |
}
|
868 |
|
869 |
-
/*
|
870 |
-
.file-upload
|
871 |
display: none !important;
|
872 |
}
|
873 |
|
874 |
-
/*
|
875 |
-
.file-upload [data-testid="
|
876 |
-
|
877 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
878 |
}
|
879 |
"""
|
880 |
|
@@ -905,12 +853,15 @@ def create_interface():
|
|
905 |
show_label=False
|
906 |
)
|
907 |
|
908 |
-
#
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
|
|
|
|
|
|
914 |
|
915 |
# Analyze button
|
916 |
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
@@ -922,13 +873,14 @@ def create_interface():
|
|
922 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
923 |
|
924 |
# Connect components
|
|
|
925 |
analyze_btn.click(
|
926 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
927 |
inputs=[text_input, mode_selection],
|
928 |
outputs=[output_html, output_sentences, output_result]
|
929 |
)
|
930 |
|
931 |
-
#
|
932 |
file_upload.change(
|
933 |
fn=handle_file_upload_and_analyze,
|
934 |
inputs=[file_upload, mode_selection],
|
@@ -936,7 +888,7 @@ def create_interface():
|
|
936 |
)
|
937 |
|
938 |
return demo
|
939 |
-
|
940 |
# Setup the app with CORS middleware
|
941 |
def setup_app():
|
942 |
demo = create_interface()
|
|
|
33 |
WINDOW_SIZE = 6
|
34 |
WINDOW_OVERLAP = 2
|
35 |
CONFIDENCE_THRESHOLD = 0.65
|
36 |
+
BATCH_SIZE = 8 # Reduced batch size for CPU
|
37 |
+
MAX_WORKERS = 4 # Number of worker threads for processing
|
|
|
38 |
|
39 |
+
# IMPORTANT: Set PyTorch thread configuration at the module level
|
40 |
+
# before any parallel work starts
|
41 |
if not torch.cuda.is_available():
|
42 |
+
# Set thread configuration only once at the beginning
|
43 |
torch.set_num_threads(MAX_WORKERS)
|
44 |
try:
|
45 |
+
# Only set interop threads if it hasn't been set already
|
46 |
torch.set_num_interop_threads(MAX_WORKERS)
|
47 |
except RuntimeError as e:
|
48 |
logger.warning(f"Could not set interop threads: {str(e)}")
|
49 |
|
50 |
+
# Get password hash from environment variable (more secure)
|
51 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
52 |
|
53 |
if not ADMIN_PASSWORD_HASH:
|
54 |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
|
55 |
|
56 |
+
# Excel file path for logs
|
57 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
58 |
+
|
59 |
+
# OCR API settings
|
60 |
+
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
61 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
62 |
OCR_MAX_PDF_PAGES = 3
|
63 |
OCR_MAX_FILE_SIZE_MB = 1
|
64 |
|
65 |
+
# Configure logging for OCR module
|
66 |
ocr_logger = logging.getLogger("ocr_module")
|
67 |
ocr_logger.setLevel(logging.INFO)
|
68 |
|
|
|
95 |
file_type = self._get_file_type(file_path)
|
96 |
ocr_logger.info(f"Detected file type: {file_type}")
|
97 |
|
98 |
+
# Prepare the API request
|
99 |
+
with open(file_path, 'rb') as f:
|
100 |
+
file_data = f.read()
|
101 |
+
|
102 |
# Set up API parameters
|
103 |
payload = {
|
104 |
'isOverlayRequired': 'false',
|
|
|
113 |
ocr_logger.info("PDF document detected, enforcing page limit")
|
114 |
payload['filetype'] = 'PDF'
|
115 |
|
116 |
+
# Prepare file for OCR API
|
|
|
|
|
|
|
117 |
files = {
|
118 |
'file': (os.path.basename(file_path), file_data, file_type)
|
119 |
}
|
|
|
124 |
|
125 |
# Make the OCR API request
|
126 |
try:
|
127 |
+
ocr_logger.info("Sending request to OCR.space API")
|
128 |
response = requests.post(
|
129 |
self.endpoint,
|
130 |
files=files,
|
131 |
data=payload,
|
132 |
+
headers=headers
|
|
|
133 |
)
|
134 |
+
response.raise_for_status()
|
135 |
+
result = response.json()
|
136 |
|
137 |
+
# Process the OCR results
|
138 |
+
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
139 |
+
extracted_text = self._extract_text_from_result(result)
|
140 |
+
processing_time = time.time() - start_time
|
141 |
+
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
142 |
+
|
|
|
|
|
|
|
|
|
143 |
return {
|
144 |
+
"success": True,
|
145 |
+
"text": extracted_text,
|
146 |
+
"word_count": len(extracted_text.split()),
|
147 |
+
"processing_time_ms": int(processing_time * 1000)
|
148 |
}
|
149 |
+
else:
|
150 |
+
ocr_logger.error(f"OCR API error: {result.get('ErrorMessage', 'Unknown error')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
return {
|
152 |
"success": False,
|
153 |
+
"error": result.get('ErrorMessage', 'OCR processing failed'),
|
154 |
"text": ""
|
155 |
}
|
156 |
|
|
|
161 |
"error": f"OCR API request failed: {str(e)}",
|
162 |
"text": ""
|
163 |
}
|
|
|
|
|
|
|
164 |
|
165 |
def _extract_text_from_result(self, result: Dict) -> str:
|
166 |
"""
|
|
|
493 |
}
|
494 |
|
495 |
# Function to handle file upload, OCR processing, and text analysis
|
496 |
+
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
497 |
"""
|
498 |
Handle file upload, OCR processing, and text analysis
|
499 |
"""
|
|
|
|
|
|
|
|
|
500 |
if file_obj is None:
|
501 |
return (
|
502 |
"No file uploaded",
|
|
|
504 |
"No file uploaded for analysis"
|
505 |
)
|
506 |
|
507 |
+
# Create a temporary file with an appropriate extension based on content
|
508 |
+
content_start = file_obj[:20] # Look at the first few bytes
|
509 |
+
|
510 |
+
# Default to .bin extension
|
511 |
+
file_ext = ".bin"
|
512 |
+
|
513 |
+
# Try to detect PDF files
|
514 |
+
if content_start.startswith(b'%PDF'):
|
515 |
+
file_ext = ".pdf"
|
516 |
+
# For images, detect by common magic numbers
|
517 |
+
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
518 |
+
file_ext = ".jpg"
|
519 |
+
elif content_start.startswith(b'\x89PNG'): # PNG
|
520 |
+
file_ext = ".png"
|
521 |
+
elif content_start.startswith(b'GIF'): # GIF
|
522 |
+
file_ext = ".gif"
|
523 |
+
|
524 |
+
# Create a temporary file with the detected extension
|
525 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
526 |
+
temp_file_path = temp_file.name
|
527 |
+
# Write uploaded file data to the temporary file
|
528 |
+
temp_file.write(file_obj)
|
529 |
|
530 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
# Process the file with OCR
|
532 |
ocr_processor = OCRProcessor()
|
|
|
533 |
ocr_result = ocr_processor.process_file(temp_file_path)
|
534 |
|
535 |
if not ocr_result["success"]:
|
|
|
536 |
return (
|
537 |
"OCR Processing Error",
|
538 |
ocr_result["error"],
|
|
|
541 |
|
542 |
# Get the extracted text
|
543 |
extracted_text = ocr_result["text"]
|
|
|
544 |
|
545 |
# If no text was extracted
|
546 |
if not extracted_text.strip():
|
|
|
547 |
return (
|
548 |
"No text extracted",
|
549 |
"The OCR process did not extract any text from the uploaded file.",
|
|
|
551 |
)
|
552 |
|
553 |
# Call the original text analysis function with the extracted text
|
554 |
+
return analyze_text(extracted_text, mode, classifier)
|
|
|
555 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
finally:
|
557 |
# Clean up the temporary file
|
558 |
+
if os.path.exists(temp_file_path):
|
559 |
+
os.remove(temp_file_path)
|
|
|
|
|
|
|
|
|
560 |
|
561 |
def initialize_excel_log():
|
562 |
"""Initialize the Excel log file if it doesn't exist."""
|
|
|
770 |
# Initialize the classifier globally
|
771 |
classifier = TextClassifier()
|
772 |
|
773 |
+
# Create Gradio interface with a properly sized file upload button
|
774 |
def create_interface():
|
775 |
# Custom CSS for the interface
|
776 |
css = """
|
|
|
780 |
color: white !important;
|
781 |
}
|
782 |
|
783 |
+
/* Style the file upload container to match the radio buttons */
|
784 |
+
.file-upload-container {
|
785 |
+
margin-left: 15px;
|
786 |
+
display: inline-block;
|
787 |
+
vertical-align: middle;
|
788 |
}
|
789 |
|
790 |
+
/* Hide file info and preview */
|
791 |
+
.file-upload-container .file-preview {
|
|
|
|
|
|
|
|
|
792 |
display: none !important;
|
793 |
}
|
794 |
|
795 |
+
/* Style the upload button to a proper size */
|
796 |
+
.file-upload-container [data-testid="chunkFileDropArea"] {
|
797 |
+
width: 150px !important;
|
798 |
height: 40px !important;
|
|
|
799 |
background-color: #f0f0f0 !important;
|
800 |
border: 1px solid #d9d9d9 !important;
|
801 |
border-radius: 4px !important;
|
|
|
|
|
802 |
display: flex !important;
|
803 |
align-items: center !important;
|
804 |
justify-content: center !important;
|
805 |
+
padding: 0 10px !important;
|
806 |
margin: 0 !important;
|
|
|
807 |
}
|
808 |
|
809 |
+
/* Show only the "Upload Document" text */
|
810 |
+
.file-upload-container [data-testid="chunkFileDropArea"] * {
|
811 |
display: none !important;
|
812 |
}
|
813 |
|
814 |
+
/* Add a new label */
|
815 |
+
.file-upload-container [data-testid="chunkFileDropArea"]::before {
|
816 |
+
content: "Upload Document" !important;
|
817 |
+
display: block !important;
|
818 |
+
font-size: 14px !important;
|
819 |
+
color: #444 !important;
|
820 |
+
}
|
821 |
+
|
822 |
+
/* Hover effect */
|
823 |
+
.file-upload-container [data-testid="chunkFileDropArea"]:hover {
|
824 |
+
background-color: #e0e0e0 !important;
|
825 |
+
cursor: pointer !important;
|
826 |
}
|
827 |
"""
|
828 |
|
|
|
853 |
show_label=False
|
854 |
)
|
855 |
|
856 |
+
# File upload component with compact styling
|
857 |
+
with gr.Column(elem_classes=["file-upload-container"], scale=0):
|
858 |
+
file_upload = gr.File(
|
859 |
+
file_types=["image", "pdf", "doc", "docx"],
|
860 |
+
type="binary",
|
861 |
+
label="",
|
862 |
+
show_label=False,
|
863 |
+
elem_id="file-upload"
|
864 |
+
)
|
865 |
|
866 |
# Analyze button
|
867 |
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
|
|
873 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
874 |
|
875 |
# Connect components
|
876 |
+
# 1. Analyze button click
|
877 |
analyze_btn.click(
|
878 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
879 |
inputs=[text_input, mode_selection],
|
880 |
outputs=[output_html, output_sentences, output_result]
|
881 |
)
|
882 |
|
883 |
+
# 2. File upload change event
|
884 |
file_upload.change(
|
885 |
fn=handle_file_upload_and_analyze,
|
886 |
inputs=[file_upload, mode_selection],
|
|
|
888 |
)
|
889 |
|
890 |
return demo
|
891 |
+
|
892 |
# Setup the app with CORS middleware
|
893 |
def setup_app():
|
894 |
demo = create_interface()
|