Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch.nn.functional as F | |
import spacy | |
from typing import List, Dict, Tuple | |
import logging | |
import os | |
import gradio as gr | |
from fastapi.middleware.cors import CORSMiddleware | |
from concurrent.futures import ThreadPoolExecutor | |
from functools import partial | |
import time | |
from datetime import datetime | |
import openpyxl | |
from openpyxl import Workbook | |
from openpyxl.utils import get_column_letter | |
from io import BytesIO | |
import base64 | |
import hashlib | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Constants | |
MAX_LENGTH = 512 | |
MODEL_NAME = "microsoft/deberta-v3-small" | |
WINDOW_SIZE = 6 | |
WINDOW_OVERLAP = 2 | |
CONFIDENCE_THRESHOLD = 0.65 | |
BATCH_SIZE = 8 # Reduced batch size for CPU | |
MAX_WORKERS = 4 # Number of worker threads for processing | |
# Get password hash from environment variable (more secure) | |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH') | |
# If the environment variable isn't set, use a default hash (for development only) | |
# This is the hash of "default_password_for_development_only" - change this in production! | |
if not ADMIN_PASSWORD_HASH: | |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb" | |
# Excel file path for logs | |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx" | |
def is_admin_password(input_text: str) -> bool: | |
""" | |
Check if the input text matches the admin password using secure hash comparison. | |
This prevents the password from being visible in the source code. | |
""" | |
# Hash the input text | |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest() | |
# Compare hashes (constant-time comparison to prevent timing attacks) | |
return input_hash == ADMIN_PASSWORD_HASH | |
class TextWindowProcessor: | |
def __init__(self): | |
try: | |
self.nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
logger.info("Downloading spacy model...") | |
spacy.cli.download("en_core_web_sm") | |
self.nlp = spacy.load("en_core_web_sm") | |
if 'sentencizer' not in self.nlp.pipe_names: | |
self.nlp.add_pipe('sentencizer') | |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer'] | |
self.nlp.disable_pipes(*disabled_pipes) | |
# Initialize thread pool for parallel processing | |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS) | |
def split_into_sentences(self, text: str) -> List[str]: | |
doc = self.nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]: | |
if len(sentences) < window_size: | |
return [" ".join(sentences)] | |
windows = [] | |
stride = window_size - overlap | |
for i in range(0, len(sentences) - window_size + 1, stride): | |
window = sentences[i:i + window_size] | |
windows.append(" ".join(window)) | |
return windows | |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]: | |
"""Create windows with better boundary handling""" | |
windows = [] | |
window_sentence_indices = [] | |
for i in range(len(sentences)): | |
# Calculate window boundaries centered on current sentence | |
half_window = window_size // 2 | |
start_idx = max(0, i - half_window) | |
end_idx = min(len(sentences), i + half_window + 1) | |
# Create the window | |
window = sentences[start_idx:end_idx] | |
windows.append(" ".join(window)) | |
window_sentence_indices.append(list(range(start_idx, end_idx))) | |
return windows, window_sentence_indices | |
class TextClassifier: | |
def __init__(self): | |
# Set thread configuration before any model loading or parallel work | |
if not torch.cuda.is_available(): | |
torch.set_num_threads(MAX_WORKERS) | |
torch.set_num_interop_threads(MAX_WORKERS) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.model_name = MODEL_NAME | |
self.tokenizer = None | |
self.model = None | |
self.processor = TextWindowProcessor() | |
self.initialize_model() | |
def initialize_model(self): | |
"""Initialize the model and tokenizer.""" | |
logger.info("Initializing model and tokenizer...") | |
from transformers import DebertaV2TokenizerFast | |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained( | |
self.model_name, | |
model_max_length=MAX_LENGTH, | |
use_fast=True | |
) | |
self.model = AutoModelForSequenceClassification.from_pretrained( | |
self.model_name, | |
num_labels=2 | |
).to(self.device) | |
model_path = "model_20250209_184929_acc1.0000.pt" | |
if os.path.exists(model_path): | |
logger.info(f"Loading custom model from {model_path}") | |
checkpoint = torch.load(model_path, map_location=self.device) | |
self.model.load_state_dict(checkpoint['model_state_dict']) | |
else: | |
logger.warning("Custom model file not found. Using base model.") | |
self.model.eval() | |
def quick_scan(self, text: str) -> Dict: | |
"""Perform a quick scan using simple window analysis.""" | |
if not text.strip(): | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_windows': 0 | |
} | |
sentences = self.processor.split_into_sentences(text) | |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP) | |
predictions = [] | |
# Process windows in smaller batches for CPU efficiency | |
for i in range(0, len(windows), BATCH_SIZE): | |
batch_windows = windows[i:i + BATCH_SIZE] | |
inputs = self.tokenizer( | |
batch_windows, | |
truncation=True, | |
padding=True, | |
max_length=MAX_LENGTH, | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
probs = F.softmax(outputs.logits, dim=-1) | |
for idx, window in enumerate(batch_windows): | |
prediction = { | |
'window': window, | |
'human_prob': probs[idx][1].item(), | |
'ai_prob': probs[idx][0].item(), | |
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai' | |
} | |
predictions.append(prediction) | |
# Clean up GPU memory if available | |
del inputs, outputs, probs | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if not predictions: | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_windows': 0 | |
} | |
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions) | |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions) | |
return { | |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
'confidence': max(avg_human_prob, avg_ai_prob), | |
'num_windows': len(predictions) | |
} | |
def detailed_scan(self, text: str) -> Dict: | |
"""Perform a detailed scan with improved sentence-level analysis.""" | |
# Clean up trailing whitespace | |
text = text.rstrip() | |
if not text.strip(): | |
return { | |
'sentence_predictions': [], | |
'highlighted_text': '', | |
'full_text': '', | |
'overall_prediction': { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_sentences': 0 | |
} | |
} | |
sentences = self.processor.split_into_sentences(text) | |
if not sentences: | |
return {} | |
# Create centered windows for each sentence | |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE) | |
# Track scores for each sentence | |
sentence_appearances = {i: 0 for i in range(len(sentences))} | |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))} | |
# Process windows in batches | |
for i in range(0, len(windows), BATCH_SIZE): | |
batch_windows = windows[i:i + BATCH_SIZE] | |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE] | |
inputs = self.tokenizer( | |
batch_windows, | |
truncation=True, | |
padding=True, | |
max_length=MAX_LENGTH, | |
return_tensors="pt" | |
).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
probs = F.softmax(outputs.logits, dim=-1) | |
# Attribute predictions with weighted scoring | |
for window_idx, indices in enumerate(batch_indices): | |
center_idx = len(indices) // 2 | |
center_weight = 0.7 # Higher weight for center sentence | |
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight | |
for pos, sent_idx in enumerate(indices): | |
# Apply higher weight to center sentence | |
weight = center_weight if pos == center_idx else edge_weight | |
sentence_appearances[sent_idx] += weight | |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item() | |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item() | |
# Clean up memory | |
del inputs, outputs, probs | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Calculate final predictions with boundary smoothing | |
sentence_predictions = [] | |
for i in range(len(sentences)): | |
if sentence_appearances[i] > 0: | |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i] | |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i] | |
# Apply minimal smoothing at prediction boundaries | |
if i > 0 and i < len(sentences) - 1: | |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1] | |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1] | |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1] | |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1] | |
# Check if we're at a prediction boundary | |
current_pred = 'human' if human_prob > ai_prob else 'ai' | |
prev_pred = 'human' if prev_human > prev_ai else 'ai' | |
next_pred = 'human' if next_human > next_ai else 'ai' | |
if current_pred != prev_pred or current_pred != next_pred: | |
# Small adjustment at boundaries | |
smooth_factor = 0.1 | |
human_prob = (human_prob * (1 - smooth_factor) + | |
(prev_human + next_human) * smooth_factor / 2) | |
ai_prob = (ai_prob * (1 - smooth_factor) + | |
(prev_ai + next_ai) * smooth_factor / 2) | |
sentence_predictions.append({ | |
'sentence': sentences[i], | |
'human_prob': human_prob, | |
'ai_prob': ai_prob, | |
'prediction': 'human' if human_prob > ai_prob else 'ai', | |
'confidence': max(human_prob, ai_prob) | |
}) | |
return { | |
'sentence_predictions': sentence_predictions, | |
'highlighted_text': self.format_predictions_html(sentence_predictions), | |
'full_text': text, | |
'overall_prediction': self.aggregate_predictions(sentence_predictions) | |
} | |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str: | |
"""Format predictions as HTML with color-coding.""" | |
html_parts = [] | |
for pred in sentence_predictions: | |
sentence = pred['sentence'] | |
confidence = pred['confidence'] | |
if confidence >= CONFIDENCE_THRESHOLD: | |
if pred['prediction'] == 'human': | |
color = "#90EE90" # Light green | |
else: | |
color = "#FFB6C6" # Light red | |
else: | |
if pred['prediction'] == 'human': | |
color = "#E8F5E9" # Very light green | |
else: | |
color = "#FFEBEE" # Very light red | |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>') | |
return " ".join(html_parts) | |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict: | |
"""Aggregate predictions from multiple sentences into a single prediction.""" | |
if not predictions: | |
return { | |
'prediction': 'unknown', | |
'confidence': 0.0, | |
'num_sentences': 0 | |
} | |
total_human_prob = sum(p['human_prob'] for p in predictions) | |
total_ai_prob = sum(p['ai_prob'] for p in predictions) | |
num_sentences = len(predictions) | |
avg_human_prob = total_human_prob / num_sentences | |
avg_ai_prob = total_ai_prob / num_sentences | |
return { | |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai', | |
'confidence': max(avg_human_prob, avg_ai_prob), | |
'num_sentences': num_sentences | |
} | |
def initialize_excel_log(): | |
"""Initialize the Excel log file if it doesn't exist.""" | |
if not os.path.exists(EXCEL_LOG_PATH): | |
wb = Workbook() | |
ws = wb.active | |
ws.title = "Prediction Logs" | |
# Set column headers | |
headers = ["timestamp", "word_count", "prediction", "confidence", | |
"execution_time_ms", "analysis_mode", "full_text"] | |
for col_num, header in enumerate(headers, 1): | |
ws.cell(row=1, column=col_num, value=header) | |
# Adjust column widths for better readability | |
ws.column_dimensions[get_column_letter(1)].width = 20 # timestamp | |
ws.column_dimensions[get_column_letter(2)].width = 10 # word_count | |
ws.column_dimensions[get_column_letter(3)].width = 10 # prediction | |
ws.column_dimensions[get_column_letter(4)].width = 10 # confidence | |
ws.column_dimensions[get_column_letter(5)].width = 15 # execution_time_ms | |
ws.column_dimensions[get_column_letter(6)].width = 15 # analysis_mode | |
ws.column_dimensions[get_column_letter(7)].width = 100 # full_text | |
# Save the workbook | |
wb.save(EXCEL_LOG_PATH) | |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}") | |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode): | |
"""Log prediction data to an Excel file in the /tmp directory.""" | |
# Initialize the Excel file if it doesn't exist | |
if not os.path.exists(EXCEL_LOG_PATH): | |
initialize_excel_log() | |
try: | |
# Load the existing workbook | |
wb = openpyxl.load_workbook(EXCEL_LOG_PATH) | |
ws = wb.active | |
# Get the next row number | |
next_row = ws.max_row + 1 | |
# Clean up the input text for Excel storage (replace problematic characters) | |
cleaned_text = input_text.replace("\n", " ") | |
# Prepare row data | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
row_data = [ | |
timestamp, | |
word_count, | |
prediction, | |
f"{confidence:.2f}", | |
f"{execution_time:.2f}", | |
mode, | |
cleaned_text | |
] | |
# Add the data to the worksheet | |
for col_num, value in enumerate(row_data, 1): | |
ws.cell(row=next_row, column=col_num, value=value) | |
# Save the workbook | |
wb.save(EXCEL_LOG_PATH) | |
logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}") | |
return True | |
except Exception as e: | |
logger.error(f"Error logging prediction data to Excel: {str(e)}") | |
return False | |
def get_logs_as_base64(): | |
"""Read the Excel logs file and return as base64 for downloading.""" | |
if not os.path.exists(EXCEL_LOG_PATH): | |
return None | |
try: | |
# Read the Excel file into memory | |
with open(EXCEL_LOG_PATH, "rb") as f: | |
file_data = f.read() | |
# Encode the file as base64 | |
base64_data = base64.b64encode(file_data).decode('utf-8') | |
return base64_data | |
except Exception as e: | |
logger.error(f"Error reading Excel logs: {str(e)}") | |
return None | |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple: | |
"""Analyze text using specified mode and return formatted results.""" | |
# Check if the input text matches the admin password using secure comparison | |
if is_admin_password(text.strip()): | |
# Return logs instead of analysis | |
base64_data = get_logs_as_base64() | |
logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
logs_filename = f"prediction_logs_{logs_timestamp}.xlsx" | |
if base64_data: | |
# Create downloadable HTML with the logs | |
html_content = f""" | |
<div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;"> | |
<h3>Admin Access Granted - Prediction Logs</h3> | |
<p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p> | |
<p>Excel file contains all prediction data with full text of all submissions.</p> | |
<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}" | |
download="{logs_filename}" | |
style="display: inline-block; margin-top: 10px; padding: 10px 15px; | |
background-color: #4CAF50; color: white; text-decoration: none; | |
border-radius: 4px;"> | |
Download Excel Logs | |
</a> | |
</div> | |
""" | |
else: | |
html_content = """ | |
<div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;"> | |
<h3>Admin Access Granted - No Logs Found</h3> | |
<p>No prediction logs were found or there was an error reading the logs file.</p> | |
</div> | |
""" | |
# Return special admin output instead of normal analysis | |
return ( | |
html_content, | |
f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", | |
f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}" | |
) | |
# Start timing for normal analysis | |
start_time = time.time() | |
# Count words in the text | |
word_count = len(text.split()) | |
# If text is less than 200 words and detailed mode is selected, switch to quick mode | |
original_mode = mode | |
if word_count < 200 and mode == "detailed": | |
mode = "quick" | |
if mode == "quick": | |
result = classifier.quick_scan(text) | |
quick_analysis = f""" | |
PREDICTION: {result['prediction'].upper()} | |
Confidence: {result['confidence']*100:.1f}% | |
Windows analyzed: {result['num_windows']} | |
""" | |
# Add note if mode was switched | |
if original_mode == "detailed": | |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis." | |
# Calculate execution time in milliseconds | |
execution_time = (time.time() - start_time) * 1000 | |
# Log the prediction data | |
log_prediction_data( | |
input_text=text, | |
word_count=word_count, | |
prediction=result['prediction'], | |
confidence=result['confidence'], | |
execution_time=execution_time, | |
mode=original_mode | |
) | |
return ( | |
text, # No highlighting in quick mode | |
"Quick scan mode - no sentence-level analysis available", | |
quick_analysis | |
) | |
else: | |
analysis = classifier.detailed_scan(text) | |
detailed_analysis = [] | |
for pred in analysis['sentence_predictions']: | |
confidence = pred['confidence'] * 100 | |
detailed_analysis.append(f"Sentence: {pred['sentence']}") | |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}") | |
detailed_analysis.append(f"Confidence: {confidence:.1f}%") | |
detailed_analysis.append("-" * 50) | |
final_pred = analysis['overall_prediction'] | |
overall_result = f""" | |
FINAL PREDICTION: {final_pred['prediction'].upper()} | |
Overall confidence: {final_pred['confidence']*100:.1f}% | |
Number of sentences analyzed: {final_pred['num_sentences']} | |
""" | |
# Calculate execution time in milliseconds | |
execution_time = (time.time() - start_time) * 1000 | |
# Log the prediction data | |
log_prediction_data( | |
input_text=text, | |
word_count=word_count, | |
prediction=final_pred['prediction'], | |
confidence=final_pred['confidence'], | |
execution_time=execution_time, | |
mode=original_mode | |
) | |
return ( | |
analysis['highlighted_text'], | |
"\n".join(detailed_analysis), | |
overall_result | |
) | |
# Initialize the classifier globally | |
classifier = TextClassifier() | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=lambda text, mode: analyze_text(text, mode, classifier), | |
inputs=[ | |
gr.Textbox( | |
lines=8, | |
placeholder="Enter text to analyze...", | |
label="Input Text" | |
), | |
gr.Radio( | |
choices=["quick", "detailed"], | |
value="quick", | |
label="Analysis Mode", | |
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis" | |
) | |
], | |
outputs=[ | |
gr.HTML(label="Highlighted Analysis"), | |
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10), | |
gr.Textbox(label="Overall Result", lines=4) | |
], | |
title="AI Text Detector", | |
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.", | |
api_name="predict", | |
flagging_mode="never" | |
) | |
# Get the FastAPI app from Gradio | |
app = demo.app | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # For development | |
allow_credentials=True, | |
allow_methods=["GET", "POST", "OPTIONS"], | |
allow_headers=["*"], | |
) | |
# Ensure CORS is applied before launching | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True | |
) |