ApaCu commited on
Commit
59d7f5d
·
verified ·
1 Parent(s): ea82f81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -94
app.py CHANGED
@@ -14,6 +14,8 @@ import os # Import os for path handling
14
 
15
  # --- Dependency Imports (Need to be installed via pip or manual clone) ---
16
  # BasicSR related imports (for SwinIR, EDSR, CodeFormer utilities)
 
 
17
  try:
18
  from basicsr.archs.swinir_arch import SwinIR as SwinIR_Arch
19
  from basicsr.archs.edsr_arch import EDSR as EDSR_Arch
@@ -21,52 +23,63 @@ try:
21
  BASESR_AVAILABLE = True
22
  except ImportError:
23
  print("Warning: basicsr not found. SwinIR, EDSR, and CodeFormer (using basicsr utils) will not be available.")
24
- BASESR_AVAILABLE = False
25
 
26
  # RealESRGAN import
 
27
  try:
28
  from realesrgan import RealESRGAN
29
  REALESRGAN_AVAILABLE = True
30
  except ImportError:
31
  print("Warning: realesrgan not found. Real-ESRGAN-x4 will not be available.")
32
- REALESRGAN_AVAILABLE = False
33
 
34
- # CodeFormer import (This assumes CodeFormer is installed and importable,
35
- # or integrated into basicsr's structure) - often requires manual setup.
36
- # We will use basicsr's utilities for CodeFormer if available, and try a direct import if possible.
37
- try:
38
- # Attempting a common import path if CodeFormer is installed separately
39
- from CodeFormer import CodeFormer # Adjust import based on your CodeFormer install
40
- CODEFORMER_AVAILABLE = True
41
- except ImportError:
42
- print("Warning: CodeFormer not found. CodeFormer (Face Enhancement) will not be available.")
43
- CODEFORMER_AVAILABLE = False
 
 
 
 
 
 
 
44
 
45
 
46
  # --- Model Configuration ---
47
  # Dictionary of available models and their configuration
48
- # format: "UI Name": {"repo_id": "hf_repo_id", "filename": "weight_filename", "type": "upscale" or "face"}
49
- MODEL_CONFIGS = {
50
- "Real-ESRGAN-x4": {"repo_id": "RealESRGAN/RealESRGAN_x4plus", "filename": "RealESRGAN_x4plus.pth", "type": "upscale", "scale": 4} if REALESRGAN_AVAILABLE else None,
51
- "SwinIR-4x": {"repo_id": "SwinIR/SwinIR-Large", "filename": "SwinIR_4x.pth", "type": "upscale", "scale": 4} if BASESR_AVAILABLE else None,
52
- "EDSR-x4": {"repo_id": "EDSR/edsr_x4", "filename": "edsr_x4.pth", "type": "upscale", "scale": 4} if BASESR_AVAILABLE else None,
53
- # Note: CodeFormer often requires its own setup. Assuming basicsr utils might help,
54
- # but its core logic is in the CodeFormer library.
55
- "CodeFormer (Face Enhancement)": {"repo_id": "CodeFormer/codeformer", "filename": "codeformer.pth", "type": "face"} if CODEFORMER_AVAILABLE or BASESR_AVAILABLE else None, # Use CodeFormer if installed, otherwise rely on basicsr utilities being present
56
- }
57
-
58
- # Filter out unavailable models
59
- MODEL_CONFIGS = {k: v for k, v in MODEL_CONFIGS.items() if v is not None}
 
 
 
 
 
 
60
 
61
  # --- Model Loading Cache ---
62
- # Use a simple cache to avoid reloading the same model multiple times
63
  cached_model = {}
64
  cached_model_name = None
65
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
66
- print(f"Using device: {device}")
67
 
68
  # Function to load the selected model
69
- def load_model(model_name):
70
  global cached_model, cached_model_name
71
 
72
  if model_name == cached_model_name and cached_model is not None:
@@ -76,35 +89,32 @@ def load_model(model_name):
76
  print(f"Loading model: {model_name}")
77
  config = MODEL_CONFIGS.get(model_name)
78
  if config is None:
79
- return None, f"Error: Model '{model_name}' not supported or dependencies missing."
 
 
80
 
81
  try:
82
  model_type = config['type']
83
  model_path = hf_hub_download(repo_id=config['repo_id'], filename=config['filename'])
84
 
85
  if model_name == "Real-ESRGAN-x4":
86
- if not REALESRGAN_AVAILABLE: raise ImportError("realesrgan not installed.")
87
  model = RealESRGAN(device, scale=config['scale'])
88
  model.load_weights(model_path)
89
 
90
  elif model_name == "SwinIR-4x":
91
- if not BASESR_AVAILABLE: raise ImportError("basicsr not installed.")
92
- # SwinIR requires specific initialization parameters
93
- # These match the SwinIR_4x.pth model from the repo
94
  model = SwinIR_Arch(
95
  upscale=config['scale'], in_chans=3, img_size=64, window_size=8,
96
  compress_ratio= -1, dilate_basis=-1, res_range=-1, attn_type='linear'
97
  )
98
- # Load weights, handling potential key mismatches if necessary
99
  pretrained_dict = torch.load(model_path, map_location=device)
100
- model.load_state_dict(pretrained_dict, strict=True) # strict=False if keys might mismatch
101
- model.eval() # Set to evaluation mode
102
  model.to(device)
103
 
104
  elif model_name == "EDSR-x4":
105
- if not BASESR_AVAILABLE: raise ImportError("basicsr not installed.")
106
- # EDSR architecture needs scale, num_feat, num_block
107
- # Assuming typical values for EDSR_x4 from the repo
108
  model = EDSR_Arch(num_feat=64, num_block=16, upscale=config['scale'])
109
  pretrained_dict = torch.load(model_path, map_location=device)
110
  model.load_state_dict(pretrained_dict, strict=True)
@@ -112,33 +122,32 @@ def load_model(model_name):
112
  model.to(device)
113
 
114
  elif model_name == "CodeFormer (Face Enhancement)":
115
- if not (CODEFORMER_AVAILABLE or BASESR_AVAILABLE): raise ImportError("CodeFormer or basicsr not installed.")
116
- # CodeFormer loading is more complex, often requiring instantiation with specific args
117
- # and potentially related models (like GFPGAN for background).
118
- # For simplicity here, we assume a basic CodeFormer instance can be created.
119
- # This part might need adjustment based on your CodeFormer installation.
 
 
 
 
120
  if CODEFORMER_AVAILABLE:
121
- # This is a simplified instantiation; a real CodeFormer usage might need more args
122
- model = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layer=9)
123
- pretrained_dict = torch.load(model_path, map_location=device)['params_ema'] # CodeFormer often saves params_ema
124
- # Need to handle potential DataParallel prefix if saved from DP
125
  keys = list(pretrained_dict.keys())
126
  if keys and keys[0].startswith('module.'):
127
  pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items()}
128
  model.load_state_dict(pretrained_dict, strict=True)
129
  model.eval()
130
  model.to(device)
131
- elif BASESR_AVAILABLE:
132
- # Fallback: If CodeFormer library isn't directly importable but basicsr is,
133
- # we *cannot* instantiate the CodeFormer model itself unless basicsr provides it.
134
- # This option is likely only possible if CodeFormer is installed *within* a basicsr environment
135
- # or if basicsr provides the architecture. Given the complexity, let's just raise an error
136
- # if CODEFORMER_AVAILABLE is False.
137
- raise ImportError("CodeFormer library not found. BasicSR utilities alone are not enough to instantiate CodeFormer.")
138
 
139
 
140
  else:
141
- raise ValueError(f"Configuration missing for model: {model_name}")
 
142
 
143
  # Cache the loaded model
144
  cached_model = model
@@ -147,10 +156,17 @@ def load_model(model_name):
147
  return model, model_type
148
 
149
  except ImportError as ie:
150
- print(f"Dependency missing for {model_name}: {ie}")
151
- return None, f"Error: Missing dependency - {ie}. Please ensure model libraries are installed."
 
 
 
 
 
152
  except Exception as e:
153
  print(f"Error loading model {model_name}: {e}")
 
 
154
  # Clear cache on error
155
  cached_model = None
156
  cached_model_name = None
@@ -159,13 +175,11 @@ def load_model(model_name):
159
  # Function to preprocess image (PIL RGB to OpenCV BGR numpy)
160
  def preprocess_image(image: Image.Image) -> np.ndarray:
161
  img = np.array(image)
162
- # OpenCV uses BGR, PIL uses RGB. Need conversion.
163
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
164
  return img
165
 
166
  # Function to postprocess image (OpenCV BGR numpy to PIL RGB)
167
  def postprocess_image(img: np.ndarray) -> Image.Image:
168
- # Ensure image is in the correct range and type before converting
169
  if img.dtype != np.uint8:
170
  img = np.clip(img, 0, 255).astype(np.uint8)
171
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
@@ -174,6 +188,7 @@ def postprocess_image(img: np.ndarray) -> Image.Image:
174
  # Main processing function
175
  def enhance_image(image: Image.Image, model_name: str):
176
  if image is None:
 
177
  return "Please upload an image.", None
178
 
179
  status_message = f"Processing image with {model_name}..."
@@ -182,7 +197,7 @@ def enhance_image(image: Image.Image, model_name: str):
182
  model, model_info = load_model(model_name)
183
 
184
  if model is None:
185
- # model_info contains the error message if loading failed
186
  return model_info, None
187
 
188
  model_type = model_info # model_info is the type string ('upscale' or 'face')
@@ -195,51 +210,38 @@ def enhance_image(image: Image.Image, model_name: str):
195
  if model_type == "upscale":
196
  print(f"Applying {model_name} upscaling...")
197
  if model_name == "Real-ESRGAN-x4":
198
- # RealESRGAN works with uint8 BGR numpy directly
199
  output_np_bgr = model.predict(img_np_bgr)
200
  elif model_name in ["SwinIR-4x", "EDSR-x4"]:
201
- if not BASESR_AVAILABLE:
202
- raise ImportError(f"basicsr is required for {model_name}")
203
- # These models often work with float tensors (0-1 range)
204
- # Using basicsr utils: HWC BGR uint8 -> CHW RGB float (0-1) -> send to device
205
  img_tensor = img2tensor(img_np_bgr.astype(np.float32) / 255., bgr2rgb=True, float32=True).unsqueeze(0).to(device)
206
 
207
  with torch.no_grad():
208
  output_tensor = model(img_tensor)
209
 
210
- # Using basicsr utils: CHW RGB float (0-1) -> HWC RGB uint8 -> Convert to BGR for postprocessing
211
  output_np_rgb = tensor2img(output_tensor, rgb2bgr=False, min_max=(0, 1))
212
  output_np_bgr = cv2.cvtColor(output_np_rgb, cv2.COLOR_RGB2BGR)
213
 
214
  else:
215
- raise ValueError(f"Unknown upscale model: {model_name}")
216
 
217
  status_message = f"Image upscaled successfully with {model_name}!"
218
 
219
  elif model_type == "face":
220
  print(f"Applying {model_name} face enhancement...")
221
  if model_name == "CodeFormer (Face Enhancement)":
222
- if not (CODEFORMER_AVAILABLE or BASESR_AVAILABLE):
223
- raise ImportError(f"CodeFormer or basicsr is required for {model_name}")
224
- # CodeFormer's enhance method typically expects uint8 BGR numpy
225
- # It might return multiple outputs, the first is usually the enhanced image
226
- # Example: CodeFormer's inference script might return (restored_img, bboxes)
227
- # We assume the image is the first element.
228
- # Note: CodeFormer often needs additional setup/parameters for GFPGAN, etc.
229
- # This is a simplified call.
230
- # Ensure model is on correct device before call
231
  if next(model.parameters()).device != device:
232
  model.to(device)
233
 
234
- # A minimal CodeFormer enhancement might look like this, but the actual API
235
- # depends on the CodeFormer library version/structure you're using.
236
- # The original CodeFormer repo's inference takes numpy BGR.
237
- # This is a *placeholder* call assuming such a method exists and works like this:
238
- output_np_bgr = model.enhance(img_np_bgr, w=0.5, adain=True)[0] # w and adain are common params
239
-
240
-
241
  else:
242
- raise ValueError(f"Unknown face enhancement model: {model_name}")
243
 
244
  status_message = f"Face enhancement applied successfully with {model_name}!"
245
 
@@ -249,7 +251,10 @@ def enhance_image(image: Image.Image, model_name: str):
249
  return status_message, enhanced_image
250
 
251
  except ImportError as ie:
252
- return f"Error processing image: Missing dependency - {ie}", None
 
 
 
253
  except Exception as e:
254
  print(f"Error during processing: {e}")
255
  import traceback
@@ -265,19 +270,19 @@ with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
265
 
266
  Upload an image and select a model to enhance it. Choose from multiple models for upscaling (to make it 'HD' or higher resolution) or face enhancement (to improve facial details and focus).
267
 
268
- **Note:** This app requires specific Python libraries (`torch`, `basicsr`, `realesrgan`, `CodeFormer`) to be installed for all models to be available. If a model option is missing, its required library is not installed or found.
269
  """
270
  )
271
 
 
 
 
272
  with gr.Row():
273
  with gr.Column():
274
  image_input = gr.Image(label="Upload Image", type="pil")
275
 
276
- # Filter available choices based on loaded configs
277
- available_models = list(MODEL_CONFIGS.keys())
278
-
279
  if not available_models:
280
- model_choice = gr.Textbox(label="Select Model", value="No models available. Check dependencies.", interactive=False)
281
  enhance_button = gr.Button("Enhance Image", interactive=False)
282
  print("No models are available because dependencies are missing.")
283
  else:
@@ -286,11 +291,11 @@ with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
286
  label="Select Model",
287
  value=available_models[0] # Default to the first available model
288
  )
289
- # Removed scale_slider as models are fixed scale (x4)
290
  enhance_button = gr.Button("Enhance Image")
291
 
292
  with gr.Column():
293
- output_text = gr.Textbox(label="Status", max_lines=2)
294
  output_image = gr.Image(label="Enhanced Image")
295
 
296
  # Connect the button to the processing function
@@ -304,7 +309,8 @@ with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
304
  # Launch the Gradio app
305
  if __name__ == "__main__":
306
  # Set torch backend for potentially better performance on some systems
307
- if torch.backends.mps.is_available():
308
- os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # Optional: enable fallback for MPS
 
309
 
310
  demo.launch()
 
14
 
15
  # --- Dependency Imports (Need to be installed via pip or manual clone) ---
16
  # BasicSR related imports (for SwinIR, EDSR, CodeFormer utilities)
17
+ # Wrap imports in try/except to handle missing libraries
18
+ BASESR_AVAILABLE = False
19
  try:
20
  from basicsr.archs.swinir_arch import SwinIR as SwinIR_Arch
21
  from basicsr.archs.edsr_arch import EDSR as EDSR_Arch
 
23
  BASESR_AVAILABLE = True
24
  except ImportError:
25
  print("Warning: basicsr not found. SwinIR, EDSR, and CodeFormer (using basicsr utils) will not be available.")
 
26
 
27
  # RealESRGAN import
28
+ REALESRGAN_AVAILABLE = False
29
  try:
30
  from realesrgan import RealESRGAN
31
  REALESRGAN_AVAILABLE = True
32
  except ImportError:
33
  print("Warning: realesrgan not found. Real-ESRGAN-x4 will not be available.")
 
34
 
35
+ # CodeFormer import (Often requires manual setup or specific installation)
36
+ # We assume it's importable if basicsr is available AND the CodeFormer library itself
37
+ # was somehow installed (e.g., via cloning and manual setup).
38
+ # Given the previous error, direct pip install from git often fails.
39
+ # We'll primarily rely on basicsr utilities, but a proper CodeFormer instance
40
+ # might still require its dedicated installation.
41
+ CODEFORMER_AVAILABLE = False
42
+ if BASESR_AVAILABLE: # CodeFormer often depends on basicsr utilities
43
+ try:
44
+ # Attempting a common import path if CodeFormer is installed separately
45
+ # This might need adjustment based on your CodeFormer install method
46
+ from CodeFormer import CodeFormer # Adjust import based on your CodeFormer install path
47
+ CODEFORMER_AVAILABLE = True
48
+ except ImportError:
49
+ print("Warning: CodeFormer library not directly importable. CodeFormer model might not work correctly.")
50
+ # If basicsr is available, we might still list the model but it might fail later if CodeFormer class isn't there
51
+ pass # Allow BASESR_AVAILABLE to potentially enable the config entry
52
 
53
 
54
  # --- Model Configuration ---
55
  # Dictionary of available models and their configuration
56
+ # format: "UI Name": {"repo_id": "hf_repo_id", "filename": "weight_filename", "type": "upscale" or "face", ...}
57
+ MODEL_CONFIGS = {}
58
+
59
+ if REALESRGAN_AVAILABLE:
60
+ MODEL_CONFIGS["Real-ESRGAN-x4"] = {"repo_id": "RealESRGAN/RealESRGAN_x4plus", "filename": "RealESRGAN_x4plus.pth", "type": "upscale", "scale": 4}
61
+
62
+ if BASESR_AVAILABLE:
63
+ MODEL_CONFIGS["SwinIR-4x"] = {"repo_id": "SwinIR/SwinIR-Large", "filename": "SwinIR_4x.pth", "type": "upscale", "scale": 4}
64
+ MODEL_CONFIGS["EDSR-x4"] = {"repo_id": "EDSR/edsr_x4", "filename": "edsr_x4.pth", "type": "upscale", "scale": 4}
65
+ # Add CodeFormer config only if basicsr is available, and potentially CODEFORMER_AVAILABLE is True
66
+ # Even if CODEFORMER_AVAILABLE is False, listing it might rely on basicsr providing necessary components (less likely)
67
+ # Given installation issues, let's only add it if the library is actually importable.
68
+ if CODEFORMER_AVAILABLE:
69
+ MODEL_CONFIGS["CodeFormer (Face Enhancement)"] = {"repo_id": "CodeFormer/codeformer", "filename": "codeformer.pth", "type": "face"}
70
+ else:
71
+ print("CodeFormer (Face Enhancement) model will not be listed due to import issues.")
72
+
73
+ # No need to filter anymore, configs are only added if available
74
 
75
  # --- Model Loading Cache ---
 
76
  cached_model = {}
77
  cached_model_name = None
78
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
79
+ print(f"Using device: {device}") # This shows which device PyTorch detects
80
 
81
  # Function to load the selected model
82
+ def load_model(model_name: str):
83
  global cached_model, cached_model_name
84
 
85
  if model_name == cached_model_name and cached_model is not None:
 
89
  print(f"Loading model: {model_name}")
90
  config = MODEL_CONFIGS.get(model_name)
91
  if config is None:
92
+ # This case should ideally not happen if UI choices are filtered,
93
+ # but good for safety.
94
+ return None, f"Error: Model '{model_name}' not configured or dependencies missing."
95
 
96
  try:
97
  model_type = config['type']
98
  model_path = hf_hub_download(repo_id=config['repo_id'], filename=config['filename'])
99
 
100
  if model_name == "Real-ESRGAN-x4":
101
+ if not REALESRGAN_AVAILABLE: raise ImportError("realesrgan was not imported correctly.")
102
  model = RealESRGAN(device, scale=config['scale'])
103
  model.load_weights(model_path)
104
 
105
  elif model_name == "SwinIR-4x":
106
+ if not BASESR_AVAILABLE: raise ImportError("basicsr was not imported correctly.")
 
 
107
  model = SwinIR_Arch(
108
  upscale=config['scale'], in_chans=3, img_size=64, window_size=8,
109
  compress_ratio= -1, dilate_basis=-1, res_range=-1, attn_type='linear'
110
  )
 
111
  pretrained_dict = torch.load(model_path, map_location=device)
112
+ model.load_state_dict(pretrained_dict, strict=True)
113
+ model.eval()
114
  model.to(device)
115
 
116
  elif model_name == "EDSR-x4":
117
+ if not BASESR_AVAILABLE: raise ImportError("basicsr was not imported correctly.")
 
 
118
  model = EDSR_Arch(num_feat=64, num_block=16, upscale=config['scale'])
119
  pretrained_dict = torch.load(model_path, map_location=device)
120
  model.load_state_dict(pretrained_dict, strict=True)
 
122
  model.to(device)
123
 
124
  elif model_name == "CodeFormer (Face Enhancement)":
125
+ if not CODEFORMER_AVAILABLE:
126
+ # This check is redundant if config is only added when available,
127
+ # but good practice.
128
+ raise ImportError("CodeFormer library was not imported correctly.")
129
+
130
+ # Ensure model_path is correct (downloaded via hf_hub_download)
131
+ # CodeFormer loading often needs specific handling for checkpoints (params_ema)
132
+ # This part is sensitive to the exact CodeFormer version/structure
133
+ # Assuming a similar loading pattern to basicsr models:
134
  if CODEFORMER_AVAILABLE:
135
+ model = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layer=9) # Basic instantiation
136
+ pretrained_dict = torch.load(model_path, map_location=device)['params_ema']
 
 
137
  keys = list(pretrained_dict.keys())
138
  if keys and keys[0].startswith('module.'):
139
  pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items()}
140
  model.load_state_dict(pretrained_dict, strict=True)
141
  model.eval()
142
  model.to(device)
143
+ else:
144
+ # Fallback check, should not be reached if config is filtered
145
+ raise ImportError("CodeFormer library not available.")
 
 
 
 
146
 
147
 
148
  else:
149
+ # This should not be reached with filtered configs
150
+ raise ValueError(f"Configuration missing or invalid for model: {model_name}")
151
 
152
  # Cache the loaded model
153
  cached_model = model
 
156
  return model, model_type
157
 
158
  except ImportError as ie:
159
+ # This catches errors if the library was *somehow* listed as available
160
+ # but then failed on a deeper import within load_model
161
+ print(f"Dependency check failed during load for {model_name}: {ie}")
162
+ # Clear cache on error
163
+ cached_model = None
164
+ cached_model_name = None
165
+ return None, f"Error: Dependency not fully available - {ie}. Model cannot be loaded."
166
  except Exception as e:
167
  print(f"Error loading model {model_name}: {e}")
168
+ import traceback
169
+ traceback.print_exc() # Print full traceback for debugging
170
  # Clear cache on error
171
  cached_model = None
172
  cached_model_name = None
 
175
  # Function to preprocess image (PIL RGB to OpenCV BGR numpy)
176
  def preprocess_image(image: Image.Image) -> np.ndarray:
177
  img = np.array(image)
 
178
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
179
  return img
180
 
181
  # Function to postprocess image (OpenCV BGR numpy to PIL RGB)
182
  def postprocess_image(img: np.ndarray) -> Image.Image:
 
183
  if img.dtype != np.uint8:
184
  img = np.clip(img, 0, 255).astype(np.uint8)
185
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 
188
  # Main processing function
189
  def enhance_image(image: Image.Image, model_name: str):
190
  if image is None:
191
+ # Return tuple of (message, image)
192
  return "Please upload an image.", None
193
 
194
  status_message = f"Processing image with {model_name}..."
 
197
  model, model_info = load_model(model_name)
198
 
199
  if model is None:
200
+ # model_info contains the error message from load_model
201
  return model_info, None
202
 
203
  model_type = model_info # model_info is the type string ('upscale' or 'face')
 
210
  if model_type == "upscale":
211
  print(f"Applying {model_name} upscaling...")
212
  if model_name == "Real-ESRGAN-x4":
213
+ if not REALESRGAN_AVAILABLE: raise ImportError("Real-ESRGAN library not available.")
214
  output_np_bgr = model.predict(img_np_bgr)
215
  elif model_name in ["SwinIR-4x", "EDSR-x4"]:
216
+ if not BASESR_AVAILABLE: raise ImportError(f"basicsr library not available for {model_name}")
217
+ # HWC BGR uint8 -> CHW RGB float (0-1) -> send to device
 
 
218
  img_tensor = img2tensor(img_np_bgr.astype(np.float32) / 255., bgr2rgb=True, float32=True).unsqueeze(0).to(device)
219
 
220
  with torch.no_grad():
221
  output_tensor = model(img_tensor)
222
 
223
+ # CHW RGB float (0-1) -> HWC RGB uint8 -> Convert to BGR
224
  output_np_rgb = tensor2img(output_tensor, rgb2bgr=False, min_max=(0, 1))
225
  output_np_bgr = cv2.cvtColor(output_np_rgb, cv2.COLOR_RGB2BGR)
226
 
227
  else:
228
+ raise ValueError(f"Unknown upscale model type configuration: {model_name}")
229
 
230
  status_message = f"Image upscaled successfully with {model_name}!"
231
 
232
  elif model_type == "face":
233
  print(f"Applying {model_name} face enhancement...")
234
  if model_name == "CodeFormer (Face Enhancement)":
235
+ if not CODEFORMER_AVAILABLE: raise ImportError("CodeFormer library not available.")
236
+ # Ensure model is on correct device
 
 
 
 
 
 
 
237
  if next(model.parameters()).device != device:
238
  model.to(device)
239
 
240
+ # Call the enhance method (adjust parameters w, adain as needed)
241
+ # CodeFormer enhance typically returns a tuple, first element is image
242
+ output_np_bgr = model.enhance(img_np_bgr, w=0.5, adain=True)[0] # Example call
 
 
 
 
243
  else:
244
+ raise ValueError(f"Unknown face enhancement model type configuration: {model_name}")
245
 
246
  status_message = f"Face enhancement applied successfully with {model_name}!"
247
 
 
251
  return status_message, enhanced_image
252
 
253
  except ImportError as ie:
254
+ # This catches errors if the library was imported initially but
255
+ # failed later when its functions/classes were called.
256
+ print(f"Error processing image due to missing dependency call: {ie}")
257
+ return f"Error processing image: Required library function not found - {ie}", None
258
  except Exception as e:
259
  print(f"Error during processing: {e}")
260
  import traceback
 
270
 
271
  Upload an image and select a model to enhance it. Choose from multiple models for upscaling (to make it 'HD' or higher resolution) or face enhancement (to improve facial details and focus).
272
 
273
+ **Note:** This app requires specific Python libraries (`torch`, `basicsr`, `realesrgan`, `CodeFormer`) to be installed for all models to be available. If a model option is missing, its required library was not successfully installed or found during startup. Check the Space build logs for installation errors.
274
  """
275
  )
276
 
277
+ # Filter available choices based on loaded configs
278
+ available_models = list(MODEL_CONFIGS.keys())
279
+
280
  with gr.Row():
281
  with gr.Column():
282
  image_input = gr.Image(label="Upload Image", type="pil")
283
 
 
 
 
284
  if not available_models:
285
+ model_choice = gr.Textbox(label="Select Model", value="No models available. Check build logs for dependency errors.", interactive=False)
286
  enhance_button = gr.Button("Enhance Image", interactive=False)
287
  print("No models are available because dependencies are missing.")
288
  else:
 
291
  label="Select Model",
292
  value=available_models[0] # Default to the first available model
293
  )
294
+ # Removed scale_slider
295
  enhance_button = gr.Button("Enhance Image")
296
 
297
  with gr.Column():
298
+ output_text = gr.Textbox(label="Status", max_lines=3)
299
  output_image = gr.Image(label="Enhanced Image")
300
 
301
  # Connect the button to the processing function
 
309
  # Launch the Gradio app
310
  if __name__ == "__main__":
311
  # Set torch backend for potentially better performance on some systems
312
+ # Removed MPS fallback for simplicity unless specifically needed and tested
313
+ # if torch.backends.mps.is_available():
314
+ # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
315
 
316
  demo.launch()